
CHANGE: EMBRACE IT, DON’T DENY IT
Tools and techniques inspired by software development can introduce the flexibility

needed to make changes during product development with minimal disruption.

Preston G. Smith

OVERVIEW: Change midstream in a product develop-
ment project often means cost and budget overruns,
schedule delays and product defects. Understandably,
managers dislike change and have installed systems,
such as phased development, to inhibit it. On the other
hand, change—from understanding the customer bet-
ter, from market dynamics and from technology
advances—is connected inescapably with innovation,
which management seeks. This article proposes an alter-
native: build a set of tools and approaches to accommo-
date change wi thout undue disrupt ion , thus
reintroducing flexibility into product development. The
flexibility techniques described in this article were
inspired by the recent reintroduction of flexibility into
the parallel field of software development by the agile
software movement. They can be used defensively to deal
effectively with imposed change or offensively to actually
lead change.

KEY CONCEPTS: product development, design
changes, product innovation, flexible development.

Change from plans during a new-product development
project is a topic that increasingly places developers and
their managers in a dilemma. On the one hand, change is
becoming increasingly commonplace. Customers, who
are presented with more and more options today and can
turn to the Internet for competitive product information,

change their minds more frequently and are more
insistent on being satisfied. Such changes by customers
put pressure on development programs to make changes
accordingly.

In addition, markets shift more often and abruptly as the
competitive arena becomes more turbulent and complex.
For example, as globalization “flattens” the Earth, com-
petitors appear from unexpected places, and they often
bring with them new, disruptive business models. For
example, Huawei appeared from nowhere in China to
become a major threat to telecommunications equipment
giants such as Cisco and Alcatel-Lucent, and Haier
likewise has given Whirlpool a rough ride (1). Another
market shift is the one in consumer goods regarding the
relative power between manufacturers (Procter &
Gamble and Rubbermaid, for example) and retailers
(such as Walmart and Home Depot) (2). Such market
shifts raise the likelihood of changes midstream in a
development project.

Finally, technology—both the technology that goes into
the product and the technology (like computer-aided
design tools) used to develop it—is changing at an accel-
erating pace. New technologies appear and existing ones
become obsolete or simply passé. Sometimes a new tech-
nology provides unexpected benefits that one would like
to exploit during a project, such as the enthusiastic
reception of portable music players by runners and others
exercising physically, which, in turn, demands unex-
pected changes during product development to incorpo-
rate resistance to rain, perspiration and vibration.
Alternatively, sometimes the benefits touted by the
purveyors of the new technology don’t pan out. This
opens more opportunities for change in the midst of
development.

On the other hand, many managers, at all levels, do not
welcome change during a project. For them, mid-project
changes open the door to product cost and development
budget overruns, schedule slippage and product defects.
Hard-pressed to deliver profit on a quarterly basis,
managers, especially at higher levels, rightly see change
as disruptive. Consequently, management has built
development systems aimed at predictability and certain

Preston Smith is a Portland, Oregon-based consultant
and trainer helping manufacturers to make their devel-
opment processes more responsive. He is co-author with
Donald Reinertsen of Developing Products in Half the
Time (Wiley, 1998), and this is his fourth article in
Research-Technology Management. His latest book,
Flexible Product Development, was published by Jossey-
Bass in 2007. Smith has been an independent manage-
ment consultant for 20 years and spent the preceding
20 years in engineering and management positions at
IBM, Bell Laboratories, General Motors, and smaller
companies. He holds a Ph.D. in engineering from
Stanford University.
preston@NewProductDynamics.com

Research � Technology Management34
0895-6308/08/$5.00 © 2008 Industrial Research Institute, Inc.

success, such as: phased development (including Stage-
Gate�), Six Sigma and Project Office. Although such
systems clearly have benefits, their gains in predictabil-
ity come with a corresponding side effect of rigidity.

In summary, although change during development is
increasingly common, I instead see managements
adopting systems that are increasingly resistant to
change. This article shows how to introduce the flexibil-
ity needed to make changes during product development
with minimal disruption, which I believe will separate
the future winners from the losers.

Consider this example of turbulence encountered by
Quadrus, a Calgary-based software development
company, in developing an application for a Canadian
online drugstore. This is a volatile market driven by
ongoing supplier, political, regulatory, and legal thrusts.
Extreme change was the essence of the management
challenge Quadrus faced. In addition, its client was
coming from behind in a bid to become a market leader.
Quadrus responded by using very short (two-day) devel-
opment iterations—each producing working software—
and weekly online deployments, which not only kept up
with the changing environment but aggressively led the
change. By having a positive attitude toward change and
employing systems that could reorient quickly, Quadrus’
client could respond to competitive challenges and regu-
latory demands faster than competitors, thus leading the
change to gain competitive advantage (3, p. 249).

A Model for Flexibility

In this article, flexibility refers to the ability to make
changes in the product being developed or in the process
by which it is developed, even relatively late in develop-
ment, without being too disruptive. Such flexibility is
rare today because managements have opted for systems
that actually restrict flexibility in favor of predictability
(as mentioned earlier), but there is an important
exception: software development. Over the past several
years, software developers, such as those at Quadrus,
have felt the need to accommodate change during devel-
opment and have developed systems that reintroduce
flexibility. These fall under the label of agile software
development, and they stem from the Agile Manifesto
(AgileManifesto.org). Although there are several varia-
tions in methodology, all agile methods employ some
rather revolutionary approaches:

• They all develop software iteratively in loops of
typically two weeks but never more than six weeks.

• They all deliver working software at the end of each of
these iterations (in contrast to the more common deliver-
able of documentation).

• They all reassess and replan the product requirements
at the end of each iteration.

• They incorporate the customer in this frequent
iterative planning.

• They depend on small, close-knit teams and will
subdivide a large project until they can use such teams.

• Many employ pairing, in which developers write all
production code using two programmers sitting at one
computer with one keyboard and mouse, trading off
between “driver” and “navigator” roles.

• They integrate one product feature at a time into the
existing package and automate testing so that they can
test continually as they integrate in order to detect
problems early.

• Furthermore, many write these tests before developing
the corresponding product feature and then design the
feature to pass the test.

This is not business as usual in the software development
world, in which the norm is a sequential (waterfall)
process with extensive upfront documentation and many
design reviews (code walkthroughs) to ensure that the
software works properly when it is finally operational.

Although agile development has grown explosively in
the software community, it depends on some unique
characteristics of the software medium—such as object
technologies and the ability to automate all testing—that
are not available to the developers of other types of
products. This does not mean that other fields cannot be
agile, but it does mean that other developers and
managers wishing to become more agile will have to
rethink the basics of agility and find other tools and
approaches for restoring flexibility to non-software
development.

This rethinking of agile development is not straightfor-
ward, nor can one simply map the agile development
characteristics in the bullet list above into flexibility
techniques for non-software development projects. It
requires a rebuilding, for instance, in recognizing that:

• There is value in making the product modular so that
change can be contained within a module (as is done with
object technologies in software).

Software developers
have produced
systems that
reintroduce
flexibility.

July—August 2008 35

• A key to flexibility is delaying decisions, (as agile
software developers do by deferring decisions on a
product feature until the iteration in which the feature is
to be implemented).

• Small, close-knit teams do best at managing the heavy,
highly responsive communication needs of a project
subject to unrelenting change.

• There is great value in building and maintaining
options to be available in case something changes.

From such recognitions, which have come largely from
observing how agile software development projects
work, I have assembled the set of flexible development
tools and approaches described below for application to
non-software products. Although aimed beyond
software, I believe these techniques will also help
software developers to better appreciate the essentials of
what they are doing.

Although each of the following tools and approaches
provides greater flexibility, each also has its costs,
monetary or otherwise. Consequently, you should apply
these tools with an eye toward both benefit and cost.
Apply them selectively to only the parts of projects
where you anticipate change or to only projects facing
the prospect of great change. This assumes that you can,
to some extent, anticipate where change is most likely to
occur.

Conversely, if you can plan a project completely and do
not expect it to change, these tools are unwise. If this is
your situation, however—because change and innova-
tion are inseparable—you might question whether you
are innovating adequately, which many CEOs put high in
their priorities (4).

Continually Monitor Customers

As noted, customers (or users) are a major source of
change. Thus, in order to manage in an environment of
change, you must find ways of staying abreast of changes
in the customer’s environment and in his/her perception
of the product you are developing; it also helps to find
ways of specifying product requirements that are less
susceptible to change.

In 20 years of product development consulting, I have
found that companies that are good at understanding
their customers find ways unique to their business for
their developers to keep in regular touch with the
customer experience. For instance, Black & Decker
sends design engineers out with customer support tech-
nicians as they make their rounds to construction sites
and home centers (5). Toyota has its Japanese engineers
cruise American freeways, rest stops, shopping malls,
and even places as unusual as Disneyland to see first-
hand how its American customers use the product (6,

p. 30). Surgical instrument manufacturers put their
designers into operating rooms.

This may simply seem like good business practice, but it
becomes essential for flexible development because it
gives developers a sense of what is going on in the user
space so that they can anticipate a change, or at least
recognize it when it happens. In short, it makes develop-
ers lighter on their feet because “they have been there
before.”

To anticipate change, you can take this one step further
than ordinary users by connecting your developers with
lead users, that is, those who are using your products—
and maybe even modifying them to suit—in advanced
ways that the general user might need tomorrow. Eric
von Hippel describes this technique (7) and cites a
project he worked on with 3M to find new infection-
control products (8). The traditional users here were
surgeons working in advanced countries, but the lead
users he found—who were forced to look at infection in
dramatically fresh ways—were veterinary surgeons,
Hollywood makeup artists, and surgeons working under
challenging conditions in developing countries.

A challenge related to understanding the changing needs
of customers is specifying product requirements in an
environment of change. So-called best practice tells us
that requirements should be specified carefully at a
project’s outset and “frozen” thereafter, but Don Reinert-
sen has found, by surveying a broad base of developers
over several years, that this never happens in practice and
that those who wait for complete specifications will
probably be beaten to market by those willing to start
with incomplete ones (3, p. 32). In other words, an envi-
ronment of evolving, changing requirements is far more
realistic for all products than the imagined one of frozen
requirements. Furthermore, Alan MacCormack and
Barry Boehm, from their research on software develop-
ment projects, show us that, even if we could specify the
product at the outset, this may be unwise, because, in a
changing environment, the ability to make mid-course
changes in requirements in response to customer
feedback yields better products (3, pp. 34–35).

Accordingly, there are several ways of specifying a
product at a higher level that is less susceptible to change,
such as by specifying how the user will relate to it rather
than by specifying features directly. These higher-level
techniques include product visions, personas, use cases,
and user stories (3, pp. 41–47).

Fence-in Change

Developers often suspect that certain parts of the product
will change more than others. If so, they can divide the
product into modules to isolate design change. Then, if
change occurs, its effect on the whole design is limited;
design changes will not ripple into areas that need not
change.

Research � Technology Management36

The idea of modular design is to create strong barriers
(interfaces) between modules. In application, this means
that you are building fences to contain areas subject to
change. Usually, you should draw the fence as tightly as
possible around the area of suspected change to
minimize the surrounding disturbance.

Black & Decker used this technique to manage change in
a cordless screwdriver project. It proceeded with the
highly engineered front end (motor, gearbox and chuck),
which was unlikely to change and kept the handle as a
separate module because its market research on handle
shape was inconclusive. The company actually changed
direction on handle shape six weeks into production
(extremely late), which was enabled by the carefully
chosen modular architecture (3, pp. 66–67).

However, Toyota (and others) uses this principle effec-
tively in reverse: it fences in the areas it does not want to
change. For example, the beams in car doors are part of
its crashworthiness capability, which can be developed
only with considerable engineering and lots of
expensive, time-consuming testing. Consequently,
Toyota fences in stability in the door beams as a module
but allows designers great freedom to change any of the
surrounding sheet metal as car styles change periodically
(6, pp. 43, 245). Toyota does the same with the transmis-
sion, a complex, highly engineered unit whose reliability
is critical; interfaces around the transmission allow it to
remain constant while everything connected to it
changes (9).

Although modular architectures have great power to
accommodate change, they also have shortcomings
relative to integral architectures. One negative of modu-
larity is cost—interfaces usually add cost to the product.
Another is a product performance burden—interfaces
generally reduce product performance by adding weight
and consuming space, or by introducing the possibility of
weak or leaky joints in mechanical systems or crosstalk
or phase shift in electrical ones. More fundamentally,
interfaces introduce constraints on the design that limit
designers’ ability to optimize the system completely.
Consequently, one should apply modular architectures
selectively where they will contribute the most to flex-
ibility without incurring undue penalties.

Try Things Out

If you believe the project will not change, you have the
luxury of planning it completely and simply following
your plan. To the extent that change might occur, you are
wise to hedge your bets. Experimentation is an excellent
tool for this, that is, trying things out intentionally to see
what might happen. Such experimentation allows you to
test alternatives, to broaden the design space in case
change occurs, and to see how robust your design is
against change.

Experimentation takes many forms. It includes: building
prototypes, mock-ups and breadboards; testing these;
running simulations and building models; and overload-
ing a system to see what fails first (a smoke test). The
savvy experimenter looks for experiments that will
return as much information and insight as possible for the
investment in money and time. This cost–benefit
equation has shifted enormously in recent years as
computer-aided technologies have greatly reduced the
cost of experimentation in many fields, such as exploring
molecules in pharmaceutical development, building
physical models of mechanical parts for customers to
touch, and automating the testing of software and
hardware.

Such computerized technologies permit experimenting
prolifically at reasonable cost. Many managers employ
these computerized tools to cut cost and simply pocket
the savings, but Orion, a Massachusetts sensor technol-
ogy firm, used computerized prototyping in a hand-held
surgical laser project to explore seven times more design
options than it would normally have while keeping its
prototyping budget to only two-thirds of the previous
amount (3, pp. 98–100). This gave Orion much more
flexibility to find a comfortable, easy-to-use design.

Again, experiments cost money and consume time, so
seasoned experimenters seek areas where change is
likely and concentrate their experimentation there. Other
trade-offs are involved. One is in deciding whether to run
several experiments, in parallel (faster) or sequentially
(usually cheaper). There are guidelines for making such
choices, such as the amount of learning you can apply
from one generation of experiments to the next and how
cleanly structured you expect the design space to be (3,
pp. 102–104).

Ability to make
mid-course changes

in requirements
in response
to customer

feedback yields
better products.

July—August 2008 37

Explore the Design Space

Experimentation is a good tool for exploring options, but
we also need a strategy for applying it, that is, for
knowing which experiments to run. Toyota has an
excellent strategy, called set-based design, that amounts
to a very different way of approaching design.

To illustrate the difference, I contrast the set-based
approach with the more normal point-based one by using
a non-product-development example attributable to
Ward et al. (10). Suppose that you wish to convene a
meeting. The traditional way of doing this (point-based)
would be for the convener to contact a participant and
negotiate a mutually acceptable time. Then the convener
proceeds to the second participant, doing the same and
perhaps returning to the first participant to renegotiate.
This repeats with the other participants.

The set-based approach would be for the convener to
request all participants’ calendars first. Then the
convener (today using modern meeting-scheduling
software), looks for a common open time (the intersec-
tion of individuals’ available times) and sets a time
where everyone is free. This not only saves time, but
more important, it exposes all possible solutions so that,
should something change, the convener is in a strong
position to make adjustments easily.

As you can see from this example, set-based design is a
subtractive process; it employs logical intersections. You
define the initial feasible space and proceed to impose
constraints, for instance constraints on the design due to
manufacturability, cost, weight, or physics. Each con-

straint reduces the feasible design space methodically.
You thus maintain a space of feasible designs so that you
can turn to another point in the space if a change renders
the current design point unsatisfactory. In short, it is a
continual pruning process.

This subtractive process and the design space it
maintains are quite different from the normal design
process that proceeds with one (or at most a few discrete)
design that the designer hones to a final point. With such
point-based design, if something changes, the designer
has no information on adjacent designs and must usually
retrace many steps. The set-based designer can merely
shift to another place in the current design space.

Build Strong Teams

You have probably read much about strong development
teams and have made improvements in your teams
accordingly. Nevertheless, there is much we can learn
from software development about the value of strong
teams and how we might build them. For a starter, the
initial statement of the Agile Manifesto is “Individuals
and interactions over processes and tools That is,
while there is value in the items on the right, we value the
items on the left more.”

In building a model to estimate the time and effort
needed to develop a piece of software, software method-
ology researcher Barry Boehm identified 22 multipliers
on project labor cost and collected data for these multi-
pliers over a broad range of development projects (11). I
have grouped these multipliers into categories in the
illustration below. Thus, the labor cost multipliers asso-

Multipliers on project labor cost span the indicated ranges for each category of project
factors. Although the data come from a broad variety of software development projects,
all but the last one also apply to non-software projects. (Computer platform factors
relate to specific characteristics of the host computer, which do not have a clear analog
for non-software products.) From Flexible Product Development by Preston G. Smith,
Jossey-Bass. © 2007 by John Wiley & Sons. Used with permission.

Research � Technology Management38

ciated with the people assigned to the project combine to
produce a possible range of 33 to 1 in project labor cost,
the multipliers associated with the product being
developed span a range of 10 to 1, and so forth.

This illustration suggests strongly that the factors asso-
ciated with people far outweigh the others, so devoting
effort toward improving how the team works is likely to
pay far bigger dividends than investments anywhere else.
This stands in contrast to the great attention and invest-
ment that firms usually devote to processes, methodolo-
gies and tools.

New data from Don Reinertsen, Gary Olson, Judith
Olson, and the agile software development community
show that co-location is a powerful factor in improving
team performance (3, pp. 142–146). This is disturbing
news in an era in which globalization and “virtualiza-
tion” are pushing teams away from co-location.
However, there is much you can do to obtain many of the
benefits of co-location even if your team is not com-
pletely co-located. These include co-locating all
members in each metropolitan area and establishing
norms for using tools like e-mail—for instance, a rule
that any team e-mail must be answered within four hours.

Strong teams are vital to flexibility because a turbulent
environment presents much bigger communication and
coordination challenges than a stable one, and high-
performance teams are the prime means of coping with
these challenges.

Make Decisions at the Last Responsible Moment

If you dissect a product development project to see what
occurs inside, you will find that the core activity is
decision making—thousands of little decisions that
cumulatively create the product. It follows that you
should concentrate on this “inner loop” of the process if
you wish to improve product development. For instance,
if you want to speed it up, find ways, such as co-location,
to accelerate decision making, as programmers do when
they find the inner loop of their code and rewrite it in a
low-level language that runs faster.

Alternatively, if you wish to be more flexible, find ways
to make decisions more flexibly. A major opportunity
here is not to make a decision until you must make
it—what we call making decisions at the last responsible
moment. This might seem like procrastination, which is
basically being lazy about a decision, but it is actually a
proactive process of identifying when the decision must
be made and scheduling it, then proceeding to collect
information to help make a better decision when its last
responsible moment arrives.

Making decisions at the last responsible moment has two
advantages. First—most importantly for flexibility—it
keeps your options open longer, and second, it allows
you to make the decision using fresher information.

However, there are some decisions, such as ones where
the outcome is not likely to change or where the
outcomes are nearly equal, that you should make early so
you can dismiss them.

Although this delayed decision-making may seem
obvious, it is not the way management normally
operates. Managers usually are paid to make decisions,
not to put them off. In contrast, managers at Toyota are
paid to delay decisions (10).

Note that popular phased development processes tend to
force organizations into making many decisions unnec-
essarily at the project’s outset in order to “nail things
down.” Unfortunately, these nailed-down items consti-
tute a loss of flexibility.

Plan Piecemeal and Constantly Consider Risk

Project management has become quite popular over the
past decade. However, the project management profes-
sion has its roots in the construction industry where pre-
dictability is valued highly and major change is relatively
uncommon. Consequently, you must handle project
management quite differently when change is the norm. I
mention just two areas to refocus:

Project planning presents a dilemma for projects under-
going heavy change. The temptation is to replan the
project in response to change, but this can lead to paying
constant attention to replanning rather than to developing
the product itself. When turbulence is high, you can shift
to two other means of planning. One is rolling-wave
planning, in which you plan the next segment in detail
and leave the rest of the project planned only at the top
level. As you progress, the wave rolls forward and the
next segment undergoes detail planning. This way, you
are not investing much in long-term plans that are likely
to change anyway.

The other is loose–tight planning in which you alternate
periods of tight planning and control with more relaxed

Improving how the
team works is likely

to pay far bigger
dividends than
investments

anywhere else.

July—August 2008 39

periods in which to regroup. This is what the iterative
approach of agile software development does by
delaying planning of features to be implemented until the
beginning of an iteration and then planning only those
features to be implemented in the next iteration. During
an iteration, planning is tight, but between iterations all
remaining work is reassessed. This is also how Boeing
developed its 777 airliner by alternating periods of
design with periods of stabilization (12).

Another part of project management you must handle
differently under heavy change is risk management.
Good practice under light change is to integrate the risk
management process with the rest of the project manage-
ment process so that risk management actions are iden-
tified, planned and executed methodically as part of the
project plan. When change dominates the project, risk
management instead must be intrinsic, that is, everything
you do to manage the project is done to manage its risk:
you keep close to customers to manage the risk of
customer change, you fence in modules to manage the
risk of pervasive design modification, and so forth.

Maintain Flexibility in Upper Layers of Process

Although the illustration suggests that the development
process is not the place to devote improvement effort,
there is nevertheless much you can do to make your
development process more flexible. First, recognize that
because a project has many dimensions, you may find
that, in one project, you need flexibility in certain areas
while you will need strict control and accountability in
certain other areas. For instance, a project may have
disastrous consequences if the product has defects but its
essence may be to extend a new technology through
market adaptation. Consequently, in this project you will
need tight control over quality while your technology
experimentation program should be open and extensive
to provide flexibility. In the next project, these areas of
control and openness may shift completely. Boehm and
Turner show how to combine flexibility with tight
control based on a project’s specific needs (13).

Software developers have learned a useful lesson about
building flexible development processes: standardize in
the lower layers of process (13, p. 152). For example,
standardize how you run a test, how you assess its results,
and how you apply tolerances to a certain type of
component. Then maintain flexibility by leaving
freedom in the upper layers of your process, that is, in
how you assemble the basic activities. We do this
because the upper layers provide the flexibility while the
lower layers provide the quality control.

Consider language as an analogous situation. We do not
change the letters; there are exactly 26 in English. Words
are mostly standardized, but new ones do arise or are
borrowed from other languages: blog, biosphere and

ciao. There are rules for constructing sentences, but
many variations are acceptable too. Looser still are para-
graphs, and almost anything goes in the document layer.

Observe that most product development processes
attempt to specify the upper layers at project outset, for
instance, by listing which activities must occur in which
phases, which unnecessarily constrains flexibility.
Instead, for flexibility, leave many of these upper-layer
decisions to be decided at the last responsible moment.

Out-Innovate the Competition

Change fits perfectly with innovation, so why make it
hard to change? Instead, use these tools and approaches
as well as many others available to you (3) to improve
your ability to change, to the point that you can out-
change and thus out-innovate your competitors. ��

References

1. Zeng, Ming and Williamson, Peter J. 2007. Dragons at Your Door.
Boston: Harvard Business School Press.
2. Mitchell, Alan. 2004. Why Retailers’ Power Has Reached the
Tipping Point. Marketing Week, August 5, pp. 32–33.
3. Smith, Preston G. 2007. Flexible Product Development. San
Francisco: Jossey-Bass.
4. Boston Consulting Group. 2006. Innovation 2006. Boston: Boston
Consulting Group, Inc.
5. Smith, Preston G., and Reinertsen, Donald G. 1998. Developing
Products in Half the Time (Second Edition). New York: Wiley, pp.
95–96.
6. Morgan, James M., and Liker, Jeffrey K. 2006. The Toyota
Product Development System. New York: Productivity Press.
7. von Hippel, Eric. 1988. The Sources of Innovation. New York:
Oxford University Press.
8. von Hippel, Eric, Thomke, Stefan and Sonnack, Mary. 1999.
Creating Breakthroughs at 3M. Harvard Business Review,
September–October, pp. 47–57.
9. Sobek, II, Durward K., Ward, Allen C. and Liker, Jeffrey K. 1999.
Toyota’s Principles of Set-Based Concurrent Engineering. Sloan
Management Review, Winter, pp. 67–83.
10. Ward, Allen, Liker, Jeffrey K., Cristiano, John J., and Sobek,
Durward K., II. 1995. The Second Toyota Paradox: How Delaying
Decisions Can Make Better Cars Faster. Sloan Management Review,
Spring, pp. 43–61.
11. Boehm, Barry W., et al. 2000. Software Cost Estimation with
COCOMO II. Upper Saddle River, New Jersey: Prentice Hall.
12. Thomke, Stefan H. 2003. Experimentation Matters. Boston:
Harvard Business School Press, pp. 168–169.
13. Boehm, Barry, and Turner, Richard. 2004. Balancing Agility and
Discipline. Boston: Addison-Wesley.

Don’t make a decision
until you must–the

last responsible
moment.

Research � Technology Management40

