
Microprocessors are being incorporated into an increasingly wide range of products. How-
ever, many of the companies that manufacture such products are not effectively managing
software development for these embedded systems. Despite the current focus on concurrent
engineering and cross-functional teams, software engineering is often poorly integrated
with the rest of the product development effort. The result is usually a costly delay in the
product’s introduction to the market.

Tomlinson G. Rauscher and Preston G. Smith describe several practices that have proved
helpful for accelerating the development of products that incorporate embedded software.
Managerial and economic opportunities for accelerating development of hardware-software
systems involve planning for dramatic growth in products that include embedded software,
cultivating in-house software knowledge, recognizing the financial effects of project deci-
sions, and measuring project progress. Improving time to market requires hiring and devel-
oping software engineering staff and managers with the requisite knowledge of the applica-
tion, ensuring that they understand the techniques for specifying requirements and design,
and providing them with clear guidelines for evaluating the trade-offs between project du-
ration, project cost, and product performance. Progress should be measured in terms of the
number of components completed, rather than the number of lines of code that are written.

During the development process, emphasis should be placed on managing the scheduling
links between hardware and software development, obtaining user feedback about the sys-
tem as early as possible, and using a flexible, ongoing review process. Development groups
should establish software requirements and design parameters before they start coding, and
testing should commence early in the system design process. By creating a working proto-
type of the user interface, developers can obtain user feedback and thereby sharpen the de-
sign specification.

Effective, timely software development requires focusing greater energy and resources on
development of the requirements specification. By expending this effort in the first phase of
a project, the development team can minimize its use of the time-consuming code-and-
debug approach to software development. In addition to breaking down a complex system
into understandable pieces, a modular design supports efforts to accelerate product devel-
opment. With a modular design, work on various modules can be assigned concurrently to
relatively independent teams. A modular design facilitates testing of the product as well as
reuse of software that was developed and deployed in previous projects

.

Address correspondence to Preston G. Smith, New Product Dynamics,
3493 NW Thurman Street, Portland, OR 97210.

J PROD INNOV MANAG 1995;12:186–199
© 1995 Elsevier Science Inc. 0737-6782/95/$9.50
655 Avenue of the Americas, New York, NY 10010 SSDI 0737-6782(95)00024-N

FROM EXPERIENCE
Time-Driven Development of Software in Manufactured Goods

Tomlinson G. Rauscher and Preston G. Smith

Reprinted with permission
from Elsevier Science Inc.

J PROD INNOV MANAG 187
1995;12:186–199

Introduction

Today’s product development professionals are apply-
ing many techniques to reduce the time consumed in
delivering manufactured goods to market. These include
cross-functional teams, quality function deployment,
concurrent engineering, and many other techniques
[10,11]. Such techniques typically focus on hardware
activities, however, without considering the peculiari-
ties of the software subsystems that often delay the
overall project.

The difficulties in managing software development
might be relegated to a small group of software spe-
cialists if it weren’t for the fact that software is be-
coming an increasingly large part of our products.
Products such as telephones, cash registers, thermo-
stats, automotive control systems, copiers, and alarm
systems—which had been electromechanical devices—
now incorporate a microprocessor. Because these mi-
croprocessors require software to drive them, the effec-
tive management of software engineering is something
we can no longer ignore if we wish to get our new
manufactured products to market quickly.

Many of us have recognized that software development re-
quires some new management approaches and thus have

turned to the considerable literature on software devel-
opment processes [6] and software project management
[1,13] for answers. These sources of information have
been of limited help for software-driven manufactured
goods for two reasons. First, the software management
literature is generally written for software professionals,
thus it often seems as unfathomable to hardware people
as the software itself. Secondly—and more subtly—the
type of data processing software usually covered in
such literature has some essential differences from the
type of software that drives the microprocessors em-
bedded in manufactured products. Rauscher and Ott [9]
are among the very few authors who address managing
the development of the distinctive software used to drive
machines in real time, and as far as we know, no one
has dealt specifically with techniques for developing
such hardware-software products more quickly.

Such techniques are the subject of this article. We
explore the subject by describing ten tools used by those
who have accelerated the development of hardware-
software systems. As outlined in Exhibit 1, the tools
cover three areas: management and economics, the de-
velopment process, and product design.

Management and Economics Opportunities

Topic 1: Plan for Dramatic Growth in Software

In the quarter century since the introduction of the first
commercial microprocessors, performance capabilities
have increased dramatically. For example, 1978’s Intel
8086 microprocessor could execute 330,000 instruc-
tions per second [5], whereas their current Pentium
P54C can perform 150,000,000 instructions per sec-
ond. Similarly, the amount of memory in microproces-
sor-controlled systems has increased from tens of kilo-
bytes to megabytes. This increase in hardware perform-
ance has enabled the development of powerful yet inex-
pensive systems for controlling the operation of a wide
variety of manufactured products.

As it is software that provides much of the function-
ality and control of electromechanical products, in-
creasing hardware performance capabilities have gener-
ated an increasing demand for software. Accordingly,
the amount of software in manufactured products has
grown rapidly. For example, Figure 1 illustrates
the increasing amount of software in copier prod-
ucts from a major manufacturer. To address this
growth, many firms have significantly increased the

BIOGRAPHICAL SKETCHES

Tomlinson G. Rauscher has almost two decades of experience
managing product development projects. He received his B.S.
from Yale University, his M.S. in Computer Science from the
University of North Carolina, his Ph.D. in Computer Science
from the University of Maryland, and his M.B.A. from the
University of Rochester. He has worked for NCR, Amdahl,
and GTE in computer systems R&D and for the past 15 years
has been a product development manager at Xerox Corpora-
tion. Rauscher holds the CDP, the CCP, and two patents. He is
the author of two books and more than 25 papers on technical
and management subjects. He had lectured on these subjects at
numerous conferences, professional meetings, and universities.
Rauscher is also listed in Who’s Who. He is currently manag-
ing a product development project that is attempting to set new
benchmarks for software productivity and time to market.

Preston G. Smith has worked exclusively for over 10 years on
accelerated product development, initially as a staff consultant
within a large conglomerate and for the past 8 years as a man-
agement consultant with New Product Dynamics. He has ap-
plied the techniques of rapid product development to consumer
electronics, home appliances, computers, medical electronics,
industrial automation equipment, and telecommunications
gear. He is coauthor of Developing Products in Half the Time
and several articles on fast-cycle product development. In ad-
dition to his consulting experience, Smith has held engineering
and management positions at IBM, AT&T, GM, and other
firms. He holds an engineering Ph.D. from Stanford and is a
Certified Management Consultant.

Effective Management Practices to Reduce
Development Time

• Staff and train for rapid growth in software complexity
• Learn from companies like Hewlett-Packard, where two

out of three engineers are devoted to software

• Emphasize applications knowledge when recruiting soft-
ware engineers

• Assure that managers overseeing software development
understand it

• Calculate the financial value of a one-month launch slip
• Be sensitive to software scheduling implications of

working close to hardware performance limits

• Don’t use lines of code written as a metric for evaluating
progress

• Measure progress in terms of the number of software
components completed

• Co-plan hardware and software activities so that hardware
development supports software testing requirements and
vice versa

• Encourage the use of modern software techniques, which
permits testing to occur later

• Insist that programmers get actual user feedback early on
• Understand the powerful but limited role of software

prototyping

• Plan on software engineers spending 20%—25% of their
time on reviews

• Monitor the review process to keep it informal (thus fast)
but effective

• Clearly establish the “what” of the software before ad-
dressing the “how”

• Ensure that programmers understand total project objec-
tives and scope

• Keep software modules as independent as possible to
break down the communication burden

• Emphasize module reusabiity

• Fully assess the time and cost of making software changes
• Simplify software development by making cost-effective

tradeoffs with hardware costs.

size of their software engineering staffs. The hardware
engineering staff has grown more slowly, if at all, be-
cause the increased integration of functionality on mi-
croprocessor and other chips simplifies the design of
increasingly sophisticated systems.

Whereas hardware capabilities have increased rap-
idly with the commercialization of a new generation of

technology every few years, software development
techniques have improved at a slower rate. Even with
improved software development tools and processes
and widespread software engineering education, the
amount of software being developed begs for improved
productivity. As a result, development managers who
have not planned for dramatic software

188 J PROD INNOV MANAG
1995;12: 186–199

Exhibit 1. Ten Tools That Have Accelerated Hardware-Software Development. Each of the 10 top-
ics covered in this article describes effective practices for managing the accelerated development of
products incorporating embedded software. Here we list some of these practices.

Topic

Management and economics opportunities
1. Plan for dramatic growth in software

2. Cultivate software knowledge

3. Root your decisions in project economics

4. Insist on measurable progress

Development process opportunities
5. Manage the scheduling links between hardware and

software

6. Let users “test drive” the system early

7. Institutionalize a fluid design review process

Product design opportunities
8. Specify requirements first

9. Break up the software monolith

10. Factor time into hardware/software tradeoff decisions

J PROD INNOV MANAG 189
1995;12:186–199

growth often find that software is delaying the schedules
of their products.

Exacerbating this situation is the fact that software is
more flexible than hardware; it seems easier to change.
Thus, product development planners usually allow for
some software additions or changes late in a product
development cycle to correct hardware problems or add
new functionality. With more software to develop for
products already delayed by too much software, these
planners may realize too late their inadequate plans for
managing software growth.

Over the past several years, managers in progressive
companies have increased dramatically the percentage
of technical staff that develops software in their organi-
zations, with the balance reaching as high as 80% for
some software-intensive types of manufactured prod-
ucts. For example, it now stands at 65% companywide
at Hewlett-Packard [12].

Thus, to achieve rapid time to market for their prod-
ucts, firms must plan on expanding the software de-
velopment and management aspects of their businesses.
And because the shift to software implementation of
functionality is occurring faster than staffing and train-
ing often can be done, leading time-to-market compa-
nies actually plan in anticipation of software growth.

Topic 2: Cultivate Software Knowledge

Because embedded software is a growing component of
so many products, a firm must actively expand software
knowledge at all levels in its organization just to keep
up its pace. In product development teams, the increas-

ing amount of embedded software has created a growing
demand for software engineers. At higher levels, prod-
uct development managers need a greater knowledge of
software technology and management techniques to
make effective decisions on the direction of their firm.

Development managers should address the growing
pains of the software engineering staff through a con-
tinuing recruiting program and a concomitant skills de-
velopment program. The two fundamental approaches
to recruiting, acquiring permanent employees, and hir-
ing temporary contract or consultant personnel, offer
different advantages and disadvantages to the firm.

In hiring new software engineers, many firms ad-
vertise for positions by describing specific qualifica-
tions. This may include a programming language (C,
C++, Visual Basic, COBOL, etc.), a database system
(DB2, Access, Oracle, SQL, etc.), an operating system
(UNIX, AIX, Windows, etc.), or even particular hard-
ware. The advantage of this approach is that it may at-
tract people whose particular expertise can help on a
project that has been well defined and only requires
knowledge of the particular implementation details.
Thus if a project is in the coding or testing phase of de-
velopment, this approach may help accelerate product
development.

Unfortunately, projects experiencing delays are sel-
dom well defined and seldom require only coding and
testing assistance. More often, projects that experience
delays have poorly expressed requirements and design
specifications. To achieve rapid time to market, such
projects require software engineers with skills in tech-
niques for requirements and design specification and
with experience in the general application area. Soft-
ware engineers who have the knowledge to specify the
requirements and design of an embedded system can
define the software modules in a way that facilitates
implementation by engineers working concurrently with
one another on various portions of the software system.
Software engineers who have specific knowledge of a
particular product application usually have deeper in-
sights into the problem domain, and can perform the
high level definitional activities very rapidly. Thus, to
improve time to market for most projects, our goal
should be to attract software engineers who are experi-
enced in the application area and in the techniques of
requirements and design specification. An effective
long-term approach to this subject is to train peo-
ple inside the company in modern software engi-
neering techniques. These people become the
knowledge engineers who have the specific infor-

Figure 1. Growth of software in copier products. Note
the logarithmic scale; for example, the code in personal
copiers has grown over 80-fold in 11 years, or at a 50%
compound annual rate of growth.

190 J PROD INNOV MANAG
1995;12:186–199

mation needed to develop applications software quickly.
With the demand for increasing the software engi-

neering staff, it may be difficult, or undesirable from a
financial commitment viewpoint, to hire permanent em-
ployees in a timely way. To fill the gap, many firms use
large numbers of contract software developers to help
them bring projects to market rapidly. One advantage in
using contract employees is that a company can acquire
them much more quickly than permanent employees.
Another apparent advantage is a cost savings compared
to permanent employees; the company usually does not
pay for benefits or make a long-term commitment to the
temporary employee. However, a closer examination
reveals additional costs. In order for contract employees
to be productive, the company must provide tools and
facilities: office space and furniture, computer systems
for development and debug, software tools for program
development, etc. The largest cost from an accelerated
product development perspective is the time required
for contract employees to learn the particular applica-
tion and product on which they are working. This factor
causes problems in two ways:

• New employees require some learning time before
they are able to work productively in their assign-
ments.

• Employees who already are working on the product
must devote significant time to training the new
employees and communicating with them. This can
make current employees less productive.

Thus, hiring contract personnel requires a significant
investment in time and money; that investment is lost
when contract personnel terminate their employment
with a company.

The investment in time that must be made to bring
new software engineers onto a project is so significant
that management should plan employee staffing profiles
carefully over time or they will surely lag the increasing
demand. For a project experiencing delays, the quick fix
of adding new people may be counterproductive. This
observation led to the formulation of Brooks’ Law:
“Adding manpower to a late software project makes it
later” [3, p. 25].

Because software development requires a great deal
of technical knowledge, skill development of the en-
gineers involved can accelerate product delivery. How-
ever, skill development takes time, so skill development
must be carefully coordinated with the project schedule.

Similarly, using advanced software development tools
can accelerate product delivery; however, deploying
new tools during a project can be a time-consuming
activity. A useful technique for balancing skills devel-
opment and tools acquisition with the desire to deliver a
product to market rapidly is to perform these activities
with a group of people while the rest of the team is de-
veloping requirements specification and high level de-
sign. At the detailed design stage, the two groups for-
mally merge to form a product development team with a
requirements specification, high level design, high skills
level, and deployed set of tools. Another aspect of rapid
product development is the deployment of software
technology. On one hand, it is desirable to incorporate
new technology into products, as that affords market
leadership opportunities. On the other hand, incorpo-
rating new technology into a product is more difficult
and time-consuming than using proven technology, and
therefore must be planned carefully.

Because of the relative youth of software, few people
with software knowledge have also had the opportunity
to develop management skills. Consequently, firms that
wouldn’t think of having a non-EE manage electronics
development seem to slip easily into the mode of letting
an individual without significant training or experience
in software development manage that function. We have
seen major companies commit this fault repeatedly. The
results are predictable: managers without specific
knowledge make improper decisions, and the project
takes much longer to complete than should be the case.

Topic 3: Root Your Decisions in Project Economics

Many development projects are late to market simply
because those involved often fail to factor the financial
value of time into their decision-making adequately. As
a result, they often undervalue time 10-fold when com-
pared with development expense or unit manufacturing
cost. Development teams can use straightforward tech-
niques to calculate the financial value of a 1-month
schedule slip [10, p. 17–41]. Such calculations must be
done on a product-specific basis, because trade-offs are
likely to balance at vastly different points for, say, a
Sony Walkman than for a ship navigation system.

The result of the calculations is a set of trade-off
rules for that product that enable everyone associated
with the development project to make sound, consistent,
and fast decisions when comparing time, money,

J PROD INNOV MANAG 191
1995;12:186–199

and product features. The trade-off rules are powerful
tools for developing products quickly, simply because
decisions with time—money—quality trade-off implica-
tions occur every day in all facets of a project, and
without such rules the decision-making process bogs
down. In particular, product developers can apply these
rules in making trade-offs on software versus hardware
implementation (Topic 10) and in many other areas that
ultimately affect software development.

A simple example of such trade-off analysis lies in
the decision of the type of memory to use in a product.
For many software-driven products (automobiles, ap-
pliances, office equipment, etc.), the user of the product
does not have to change the software in the product to
use it. Indeed, the user may not even know that the
product is software driven. For such products, the soft-
ware may reside in read-only memory (ROM), a mem-
ory technology in which the software is “burned in” to
the memory, never to be changed again. Such memory is
inexpensive, yet it is inflexible; it cannot be changed. At
the other end of the memory spectrum is dynamic ran-
dom access memory (DRAM), which can be read from
or written into at speeds comparable to the execution
speeds of microprocessor instructions. Although this
memory is more expensive than ROM, it offers flexibil-
ity in making changes. Thus software being developed
in DRAM can be more easily changed in development,
test, and field environments, which can accelerate prod-
uct development and facilitate incremental improvement.
When development groups select the memory technolo-
gies for use in a product, they usually consider trade-
offs between the cost and flexibility of various memory
types. An important part of this trade-off analysis
should be the time to market benefit that a flexible
memory type provides. Note that although this is a
hardware selection issue on the surface, it has many
software scheduling ramifications.

Software researchers have found that there are many
other factors that substantially influence the amount of
effort and the length of time required to develop soft-
ware for a product. In his seminal work on the subject
[2], Barry Boehm developed a constructive cost model
(COCOMO) for estimating the effort and time to de-
velop software, based on fifteen factors shown statis-
tically to affect software development. Table 1 groups
these fifteen factors into four categories.

A product development group can shorten the time
required to deliver a software-driven product by ad-
dressing the following factors:

Table 1. Factors That Influence Software Develop-
ment Time and Effort

Product attributes
Required software reliability
Database size
Product complexity

Computer attributes
Execution time constraint
Memory size constraint
Virtual machine volatility
Computer turnaround time

Personnel attributes
Analyst capability
Applications experience
Programmer capability
Virtual machine experience
Programming language experience

Project attributes
Modern programming practices
Use of software tools
Required development schedule

• Execution time constraint.
Selecting a faster microprocessor for a product re-
duces the time software developers devote to opti-
mizing their software to avoid real-time problems.

• Memory size constraint.
Similarly, providing a large amount of memory re-
duces the time software developers devote to opti-
mizing their software to fit into a constrained
memory size.

• Computer turnaround time.
Providing a powerful computer system that quickly
runs software development tools reduces the time a
software developer often spends waiting for re-
sults.

• Use of modern programming practices.
Routine use of a suite of modern programming
practices (structured or object-oriented analysis
and design, top-down incremental development,
design and code walkthroughs or inspections, etc.)
simplifies the process for developing software,
thus reducing the time to deliver a product to the
market place, largely by reducing rework.

• Use of software tools.
An advanced set of software tools (compiler, op-
erating system, interactive debugger, design lan-
guage, configuration management system, docu-
mentation system, project control system, etc.) re-
duces the effort software developers devote to

clerical tasks or assists software developers in in-
tellectual tasks, thus improving time to market.

Boehm found that the effort required to develop soft-
ware for a product varied significantly depending on the
trade-offs made in a product development project. He
was able to quantify the relative effect of trade-offs for
these factors. In Figure 2, for example, we see that if
the memory size constraint is extra high (95% of avail-
able memory is used, the cost-effective solution), then
the effort required to deliver the product will be 56%
more than the nominal case (less than 50% of the mem-
ory is used). Of the factors in Table 1 not shown in
Figure 2, the combined set of personnel attributes has a
huge effect on required effort and development time.
Thus, in order to shorten development cycles continu-
ally over the course of several products, management
should invest in increasing the capabilities and experi-
ence of the staff.

Using a few simple formulas, one can estimate the ef-
fort and time required to develop the software for a
product using the relative values of the factors in Table
1 and an estimate of the size of the software to be de-
veloped. Figure 3 shows the variation in development
time between projects that make decisions to minimize

software development time and effort versus projects
that make decisions to minimize cost. The graph shows
that development time could double when developers
make decisions in favor of cost rather than schedule.

Topic 4: Insist on Measurable Progress

It is difficult to manage activities that cannot be mea-
sured, and accurate measurement is especially impor-

192 J PROD INNOV MANAG
 1995;12:186–199

Figure 2. Boehm found that 15 factors had a significant effect on software development time and effort [2]. The
graph shows five of these factors that are manageable. For each factor, the bars contrast relative effort for the time-
effective versus cost-effective values of the parameters. The value 1.0 represents the value for a nominal project.

Figure 3. Effect of manageable factors on development
time. These curves were calculated from the COCOMO
model using cost-effective versus time-effective values
for the five factors described in the text, which a project
can control. Other factors could affect product devel-
opment time further.

J PROD INNOV MANAG 193
1995;12:186–199

tant when timely completion is a key project require-
ment. On the surface, it would appear to be straight-
forward to measure development project completion in
terms of the number of drawings completed for hard-
ware and the number of lines of code written for soft-
ware.

However, innovation does not proceed so method-
ically. Honest engineers fall prey to the 95% syndrome,
in which 95% of the work seems to be completed, as-
suming that no more unforeseen difficulties occur. By
the next month, some additional unanticipated problems
have been solved, certainly placing us ahead of last
month, so progress must now stand at 98%.

This trap is even more severe for software than for
hardware, due to the fact that software is that much
harder to see or touch. The problem areas are corre-
spondingly more difficult to notice or manage, so the
schedule tends to be softer.

For hardware development we often advise against
highly structured phased development processes, be-
cause although they appear to contribute a degree of
certainty to the process, they also act is several ways to
slow down development [11]. However, software devel-
opment requires more structure and clearer completion
points because of its intangible nature.

Fortunately, there are some tools available to mea-
sure the progress of software development activities.
One is to allocate effort by development phase accord-
ing to past experience as to how much work is required
in each phase [9, page 8]. This does not mean that one
cannot overlap phases, but it does highlight areas in
which overly optimistic thinking is occurring. For ex-
ample, if one does not allocate enough testing effort
relative to the coding effort that is planned, there is
likely to be schedule slippage in the testing phase.

Another tool that teams use to manage progress is to
break the whole project down into “bite sized” tasks,
each of whose completion is verifiable, and measure
completion according to the number of tasks that have
been completed to date. No credit is given for partial
completion of a task. Normally, a task should represent
two to four person-weeks of effort.

Part of the project planning is to determine the staff-
ing required to complete the defined tasks. From this
information, one determines how many tasks will be
completed as a function of time, which provides a
measurable target of planned completion at any time.
Actual completion can be plotted against this curve to
see how well the project is tracking the plan. Kmetovicz
provides details on this project management tool [8].

We suggest managing progress in terms of the per-
centage of small tasks completed because the alterna-
tives do not work well for embedded software. The tra-
ditional alternative is lines of code written, but it has
several flaws. If effective software development prac-
tices are used, actual code writing is a small part of the
whole development process. Moreover, the lines of code
written can vary greatly depending on the language
used and the skill and diligence of the programmer.
Some programmers are rewarded by the number of
lines they write each day, encouraging them to be ver-
bose, whereas others are under tight restrictions on
memory usage for the program, which requires them to
spend extra time being concise. Finally, just because a
line of code is written doesn’t mean that it is correct,
and if it was done sloppily, many times the coding ef-
fort can be spent in finding the mistakes and correcting
them.

Development Process Opportunities

Topic 5: Manage the Scheduling Links
Between Hardware and Software

Hardware and software development each have their
own scheduling demands that would appear to preclude
developing the hardware and software concurrently.
Consequently, product development teams must devote
special attention and creativity to overcoming the natu-
ral tendency toward sequential development. A common
example of this conflict is the desire to have a hardware
vehicle available for testing the software before the tar-
get hardware is normally working. In many cases this
situation is further complicated, because the hardware
engineers want some software to drive their hardware
and demonstrate that it works. Basically, each disci-
pline believes it must wait until the other discipline has
completed its work. There are several solutions to this
apparent dilemma:

• Encourage development groups to use modern
software development practices, which involve in-
vesting heavily in upfront effort to establish soft-
ware requirements and design parameters before
starting the coding [9,13]. These practices natu-
rally defer the need for a test vehicle and
minimize the need for tail-end software test
efforts to catch problems that could have been an-

194 J PROD INNOV MANAG
1995;12: 186–199

ticipated. They also produce code that is more
mature and consequently is better positioned to
support initial hardware testing. Thus, enforcing
good programming practice minimizes the prob-
lem.

• More specifically, plan the hardware and software
testing early—simultaneously with system de-
sign—to anticipate scheduling conflicts and po-
tential delays in the testing phase. In addition, this
encourages test developers to focus on system
functions, not design details.

• Recognize that the interaction of new hardware
with new software will naturally complicate the
testing process, thus stretching the testing sched-
ule. Solutions include using the techniques of in-
cremental innovation, reuse, and modularity, to
minimize the amount of new design that requires
testing [10, pp. 6979, 99––06], and the techniques
of risk management to resolve different risks si-
multaneously but independently [10, pp.
214–221].

• Build a simulator, using the target microprocessor,
for use as a software testbed. Then the software
can be debugged before the actual hardware is
functioning. Such simulators are also useful for
debugging and testing the software while prototype
hardware evolves through its design cycle, espe-
cially during periods when the hardware is tempo-
rarily decommissioned to incorporate design up-
grades. Furthermore, simulators provide a consis-
tent baseline that isolates software debugging,
which makes it easier to determine which problems
relate solely to software and which involve soft-
ware–hardware interaction. Note that building
simulators is an application of our principle of
“building a tall junk pile” [10, p. 191].

Underlying these solutions is a common thread of
close collaboration between hardware and software
engineers. Because there is a high degree of interde-
pendence between software and hardware activities,
and opportunities abound to blame the other side for
scheduling problems, the basic approach to accelerat-
ing the combined process is to change “they” situations
into “we” situations. Possible solutions include:

• Organizing so that software and hardware person-
nel report to a common project leader.

• Co-locating this combined team.

• Jointly creating product specifications and project
plans to promote joint ownership of objectives.

• Ensuring that evaluation, recognition, and reward
systems support mutual accountability.

Although the value of this collaboration may seem
obvious, it often fails to happen in practice. Software
engineers are often viewed as scarce, specialized re-
sources (Topic 1); the nature of programming often
calls for lengthy, uninterrupted concentration, which
seems to preclude a shared work space; and because
management does not understand software development
(Topic 2), they allow software engineering to become
an isolated technical resource instead of an equal part-
ner in the business of product development.

Once this joint team is in place, development groups
should emphasize operating proactively rather than
reactively to identify and exploit opportunities for get-
ting activities off the critical path. This is why we have
suggested previously that test plans be created early, so
that potential schedule or technical risk difficulties can
be identified while maneuvering room exists.

Topic 6: Let Users “Test Drive” the System Early

One factor is clearly more important than time to mar-
ket: getting a product to market that is a commercial
success. And obtaining a commercial success is 3.3
times as likely when the team has specified require-
ments, that is, there is a sharp problem definition [4, p.
59]. The difficulty, though, is that customers often
don’t know what they want until they see it. Conse-
quently, there is great value in putting a likeness of the
system into users’ hands as early as possible in order to
see if it satisfies them. In addition to the obvious cus-
tomer satisfaction issues in getting their feedback,
however, there are direct timesaving advantages: de-
velopment teams can focus further development where
it will create the greatest customer value and can drop
features that evoke little customer enthusiasm, thus
saving development time.

Hardware developers use prototypes to get user
feedback, and one of the techniques of rapid hardware
development is to get prototypes into users’ hands early
on. The same approach, known as software pro-
totyping, applies to software development.

Consider how Siemens Medical Systems, Inc.,

J PROD INNOV MANAG 195
1995;12:186–199

Electromedical Group, used software prototyping to
home in on user requirements quickly. They were de-
veloping a cardiac work station, and it wasn’t certain
what would be the best approach for designing the user
interface. So the software engineers mocked up an inter-
face using high-level, easily modifiable software tools.
Then they brought in some cardiologists to “test drive”
the prototype. Based on these user reactions, they modi-
fied the prototype in a few hours and had the same us-
ers try the modified version to see if they had it right
yet. Once they had a firm grasp of what would be easi-
est for the doctors to use, they could plan the real soft-
ware development efficiently.

Hardware prototypes are broadly applicable tools
that can be used to test user interaction issues or de-
termine whether the interior portions of the machinery
will operate properly. For example, some hardware
prototypes are used to check out ergonomic issues,
whereas others run for millions of cycles under adverse
conditions just to see if the design will endure. In con-
trast, software prototypes have a more focused area of
application. They can be even more powerful than their
hardware counterparts in specifying user interfaces with
the product, because interface design requirements can
be more elusive in the intangible software medium than
in hardware. For interface design, the time taken to un-
derstand user needs through prototyping can save much
redesign time later. On the other hand, the use of a
prototyping, cut-and-try approach for the interior ker-
nel, or “engine,” portion of the software is an ineffec-
tive, time-consuming means for writing code when
sound engineering methods are available for building
these clearly specified portions of the system. Thus, the
use of hardware prototypes can be embraced univer-
sally, but the software counterparts are quite advanta-
geous in some areas and detrimental in others.

Similarly, embracing software prototypes leads to an
important methodological dilemma. Software used to be
written in an informal cut-and-try style, but as software
projects became larger and more complex, this style
became ineffective. This has led to the modular soft-
ware methodologies described in Topics 8 and 9 and
also to making sure that programmers switch to these
methodologies. In a way, software prototyping is a
throwback to the “obsolete” informal methods from
which modern software leaders are just weaning their
workers. Thus, it seems that software prototyping is
headed in exactly the wrong direction in terms of the
development of a science of programming.

This brings us to an important principle of rapid
product development, which is to be flexible about the
process used. In many cases a formal engineering ap-
proach will be fastest, because it will allow effective
subdivision of the work and thus a more concentrated
effort, and it will reduce dead ends and rework. Yet,
there is also a place for the powerful but informal tool
of prototyping. The fast product developers are those
who recognize the power and pitfalls of each tool and
use a combination of approaches that works most ef-
fectively for the case at hand. To arbitrarily rule out an
unstructured approach like prototyping is to slow
down—or worse, overlook—the crucial task of under-
standing what the customer wants.

Topic 7: Institutionalize a Fluid Design
Review Process

Hardware developers often ascribe considerable im-
portance to design reviews. But these same people sel-
dom conduct design reviews on a regular basis, nor are
they often happy with their review process. For hard-
ware, reviews are a useful design assurance technique,
but other techniques, like prototyping, can also assure
the design quality.

Software design requires a design assurance process
to a greater degree than hardware, as design flaws are
more difficult to spot in the less visible medium of soft-
ware. Moreover, software does not have tools such as
prototypes available as alternatives to reviews. (Soft-
ware prototypes, discussed in Topic 6, are valuable for
certain purposes but not for verifying design quality.)

Thus, whereas hardware reviews might be put into
the nice-to-have category, software reviews—sometimes
called walkthroughs or inspections—are an essential
part of the software development process. Software en-
gineers who are working effectively spend 20%–25% of
their time on reviews: preparation, the review itself, and
follow-up activities. Projects without this level of re-
view are likely to bog down in their later stages as pre-
viously undiscovered problems arise. When such mis-
takes are discovered late, they are likely to be time-
consuming to correct, in part because any successful
testing done to date will have to be repeated to assure
that the fix hasn’t introduced new bugs.

The temptation might be to go light on reviews, espe-
cially for those coming from a hardware develop-

196 J PROD INNOV MANAG
1995;12:186–199

ment background, because reviews are seen as a non-
value-adding activity that does not directly result in
lines of code written. Yet, reviews really fit into the
ounce-of-prevention category.

Because reviews are such a large part of the soft-
ware development process, the real schedule issue isn’t
so much the amount of review but the responsiveness of
the review. In the fastest projects, development groups
use software reviews as an informal but essential
means of doing business. They are handled at a rela-
tively low level and on a frequent basis, by using com-
petent peers. The low level tends to keep them informal,
and doing them frequently keeps the task from becom-
ing overwhelming and catches difficulties when they
can be fixed easily and without bruising egos. When
peers are used routinely for review, they soon learn to
be thorough but fair in their assessment, because they
are likely to be the reviewee rather than the reviewer
next time. Management’s main responsibility in this
informal system is simply to make sure that reviews
occur on a frequent, regular basis and to monitor the
overall effectiveness of the system to assure that it
makes the best use of people’s time.

Several conditions are necessary for such a system to
take root in an organization, the sorts of things we have
all heard before: top management support, supported
by adequate and ongoing training, in alignment with
corporate goals, and consistent with the reward and
compensation systems. Along these lines, one issue
stands out when development urgency is paramount: an
adequate source of accessible reviewers is needed so
that reviews can be scheduled routinely on reasonably
short notice. Otherwise, projects experience ongoing
delays waiting for review, and review is done on work
that has solidified to the point that changes become
costly. There are two implications here, both of them
fundamental and obvious but nonetheless difficult to
achieve. First, the compensation and recognition system
must encourage reviewing, which can be as simple a
matter as having a charge number for reviewing, so
that it does not have to be charged to the reviewer’s or
the reviewee’s project. Second, managers must not so
overload their most valuable reviewers with various
assignments that their backlog precludes timely re-
views.

Some companies are using outside contractors as re-
viewers. This is an example of trading development
expense for schedule time, which the project’s eco-
nomic analysis (Topic 3) may show to be an excellent

buy. Outside reviewers have no axe to grind, and they
can be called in when desired.

Product Design Opportunities

Topic 8: Specify Requirements First

As described in Topic 1, today’s embedded software
systems can be very large, often reaching hundreds of
thousands of statements written in a high-level com-
puter language. Such complexity makes it difficult to
comprehend the task of developing a feature-rich em-
bedded software system or even to determine a starting
point in understanding the design of a large system
based on software developed for a previous product.
Effective software development groups use two key
techniques to guide the design of and enable com-
prehension of large software systems: requirements-
driven design (covered here) and modular design (cov-
ered next).

Although requirements-driven design may seem
natural to most product developers, it isn’t natural to
software engineers. Most software developers learn
their craft by studying some basic computer language
constructs, then creating small programs. For each pro-
gram they develop, they spend some time coding and
then debugging the program until it works the way they
want. Although this incremental approach is a wonder-
ful way to learn programming, it is ineffective in devel-
oping large embedded software systems, because it em-
phasizes implementation before the understanding of
the structure of the entire system to be developed.
Many companies still use this approach because they
believe they can measure progress in terms of lines of
code written. This is usually not an effective measure,
because it does not indicate the correctness of the soft-
ware developed or indicate the amount of effort that
remains.

In contrast, software development teams should
spend much of their time on the most important phase
of software development, namely, the requirements
specification phase. The purpose of this initial phase of
the software development process is to produce a re-
quirements specification document that defines what the
software system must do: the functions to be per-
formed, the performance to be achieved, and the design
and development constraints. If the team fails to de-
velop a specification properly, the software developers
involved in subsequent design and test activities

J PROD INNOV MANAG 197
1995;12:186–199

must make assumptions about the exact nature of the
requirements. The assumptions are seldom entirely
correct, and this causes errors in later design and cod-
ing phases of embedded software development. Note
for software that is to be reused in other products, the
specification is critically important.

The next phase of software development, design,
transforms the requirements specification document
into a detailed physical structure of modules, which are
later coded into software components. Like the
architectural blueprints of a construction project, a
good design provides speed advantages in delivering a
product to market [3, p. 143]:

• From the detailed design, the developers can de-
termine more accurately the time required to com-
plete software development.

• The partitioning of modules avoids system bugs,
which otherwise would not be found until late in
the development process when they would be time-
consuming to correct.

Although specifying requirements first requires an
investment of time early in the project, it saves much
more time later on. The problem with the code-and-
debug approach to design is that it masks fundamental
interface and integration issues that are time-consuming
to fix late in the development process. Figure 4
illustrates the time-to-market differences between these
two approaches to software development.

Topic 9: Break up the Software Monolith

The concept of modular design evolved from the ob-
servation that people cannot simultaneously compre-
hend the large number of details in a monolithic struc-
ture. Modular design organizes this monolith into
comprehensible components, called modules. Devel-
oping the design of a software system, or subsystem,
then becomes a task of deciding on the capabilities of
each module and the interfaces among the modules. The
modules in a good design exhibit minimal coupling, so
that the development and understanding of one module
does not depend on or affect the design of another
module. Inside the modules of a good design, the data
and functions are highly cohesive, so that the
development and understanding of the module does not
depend on too many details. Although they are beyond
the scope of this article, the design principles of
coupling and cohesion are well established [9, pp. 104–
107]. Thus, the value of a modular design is its
presentation of the necessary information in pieces that
can be studied independently yet can be easily
understood.

Beyond the improvements that accrue from improv-
ing the understanding of a complex software system,
modular design offers additional opportunities for ac-
celerating the development of embedded software sys-
tems:

• Relatively independent teams can be put to work
on different modules, thus multiplying staffing
without paying the communication burden nor-
mally associated with large teams.

• Testing becomes more flexible to schedule, be-
cause modules can be tested fairly independently
whenever they are ready, rather than having to
wait for completion of other modules.

• Modular design facilitates reusing software devel-
oped and deployed in previous products. This is a
powerful technique for reducing the time required
to develop a product by simply reducing the
amount of software that has to be written and
tested. Indeed, many companies have invested in
developing libraries of reusable modules, from
which product development teams can check out
software that has already been developed and
tested. Their task can then be characterized as one
of integrating existing software with new software.
For example, Xerox frequently bases the software
of new copiers on software modules de-

Figure 4. The “specify-first” approach delivers the first
lines of code later but delivers the entire software
package earlier with less effort. These graphs are based
on experience regarding the relative probability of
making errors and the cost of fixing errors using the two
different approaches.

198 J PROD INNOV MANAG
1995;12:186–199

veloped previously, thus significantly reducing
time to market.

Topic 10: Factor Time into Hardware/Software
Trade-off Decisions

The traditional battleground between software and
hardware engineers is whether a specific feature should
be implemented in hardware or software. Many factors
enter into such decisions, including manufacturing cost,
production volume, development effort, system per-
formance, and ease of accommodating design changes.
Our experience, however, is that product developers do
not take into account the appropriate factors in making
such decisions. Typically, they base their decisions on
manufacturing cost but do not consider the dollar cost
of development time.

Although such hardware-software implementation
decisions appear to be technical trade-offs, their basis
is in fundamental business and product strategy prin-
ciples. To obtain trade-offs that properly balance de-
velopment time with other project objectives, software
engineers will have to acquaint themselves with end
users, competitive offerings, field service procedures,
and the like. This demands that they be integrated into
the project at a level far deeper than just “designing to
spec.” On the other hand, those from marketing, pur-
chasing, and similar functions will have to learn more
about software development (Topic 2) to see through
the smoke screen that software engineers sometimes try
to erect when it seems simpler to make decisions uni-
laterally.

Consider a trade-off decision made by one of our cli-
ents—Siemens Medical Systems, Inc., Electromedical
Group—when they developed a special input-output
board for one of their instruments. The board had two
quite different and reasonably independent functions,
but technical considerations suggested that both func-
tions would fit on one circuit board, sharing a micro-
processor. However, when they looked at the design as
a time to market issue, they decided on quite a different
solution. Both functions were placed on one board, but
each had its own portion of the board and its own mi-
croprocessor. Thus, they had to buy an extra micro-
processor on the hardware side, but they gained key
schedule advantages on the software side:

• They could divide the project into two relatively
independent subprojects, which meant clearer ob-
jectives, smaller teams, better communication, and
easier testing.

• They were working well down on the micropro-
cessors’ processing capability curve, which meant
that the software engineers didn’t have to spend
extra time planning and writing unusually efficient
code to satisfy the machine’s cycle time require-
ments (see Topic 3).

Although Siemens made this decision to facilitate
software development at the expense of hardware cost,
many such decisions go in the other direction, espe-
cially late in the development cycle, when the hardware
seems “locked in,” and software seems so flexible.
When features tend to migrate toward software imple-
mentation, the software portion of the project becomes
overburdened, then slips. Often product development
groups fail to detect this effect because the changes in
requirements occur progressively—what aptly has been
called “creeping elegance.” At each step the software
change seems relatively simple but the effort required
to make the hardware change is clearer.

Perceived cost is another factor that drives product
developers too strongly toward software solutions. A
software change often seems free, but changing the
hardware has clearer manufacturing cost, development
expense, and scheduling implications. The solution here
is not only to estimate realistically all of the costs asso-
ciated with the software change but also be aware of
the trade-off factors between cost and time. A slip in
the schedule is usually much more costly than just the
extra salary of the engineers involved. To make rapid,
accurate decisions between software and hardware im-
plementation, everyone influencing a project must
know just how much one month of schedule slippage
will affect the company’s bottom line, which can be
calculated as indicated in Topic 3.

Conclusions

Two themes underlie the advice given in this article.
One is that because software is a new and dramatically
growing element of many manufactured products, the
software development process is subject to many types
of growing pains. These include a scarcity of software
engineers, the need for a strong program to recruit and
train such engineers (even if the company is not re-
cruiting in general), the need to procure new software
development hardware and software and replace such
development tools that have become obsolete quickly,
and the need for everyone in the company involved with
new products to become as comfortable with soft-

J PROD INNOV MANAG 199
1995;12:186–199

ware development as they are with hardware develop-
ment. Because of the explosive growth of software-
based functionality in the “afflicted” products, the im-
plementation of these changes is likely to lag the need
for the changes, even in the best-run companies. And
until implementation catches up with the need, software
development problems are likely to be the cause of
many product launch delays.

The other theme is that software development issues
must be integrated into the daily decision-making pro-
cess of a product’s development. This journal has car-
ried many articles on the integration of marketing with
R&D, and the Product Development and Management
Association has even sponsored annual conferences on
this subject. On a related front, the popular concurrent
engineering movement has helped companies to inte-
grate manufacturing issues into a product’s daily design
decision processes so that the resulting product design
is manufacturable at target cost. A logical extension of
this trend is that if software is a crucial part of a new
product, software engineers will have to be woven into
the ongoing decision-making that makes for a success-
ful, rapidly developed product.

Yet, the obstacles to making the software engineers
regular members of a development team may seem
more difficult to surmount than for other disciplines.
Software is a highly technical specialty—which some
software engineers may prefer to keep to themselves.
Software development requires long uninterrupted pe-
riods of concentration, which tends to conflict with
team co-location. And software engineers are usually
the last to come into contact with the customer. For
anyone who has not experienced software development
directly, The Soul of a New Machine [7] and Show-
stopper! [14] illuminate this distinctive world of the
software engineer effectively.

Although the path may be difficult, we have tried to
provide a good map and signposts here, and we know
from experience that the destination—faster develop-
ment of embedded software—makes the journey worth
taking.

References
1. Boddie, John. Crunch Mode: Building Effective Systems on a Tight

Schedule. Englewood Cliffs, NJ: Yourdon Press, 1987.

2. Boehm, Barry W. Software Engineering Economics. Englewood Cliffs,
NJ: Prentice-Hall, 1981.

3. Brooks, Jr., Frederick P. The Mythical Man-Month—Essays on Soft-
ware Engineering. Reading, MA: Addison-Wesley, 1975.

4. Cooper, Robert C. Winning at New Products. Reading, MA: Addison-
Wesley, 1993.

5. Halfhill, Tom R. 80X86 wars. Byte 19(6):74–88 (June 1994).

6. Humphrey, Watts S. Managing the Software Process. Reading, MA:
Addison-Wesley, 1989.

7. Kidder, Tracy. The Soul of a New Machine. New York: Avon Books,
1981.

8. Kmetovicz, Ronald Eugene. New Product Development: Design and
Analysis. New York: John Wiley & Sons, 1992.

9. Rauscher, Tomlinson G. and Ott, Linda M. Software Development and
Management for Microprocessor-Based Systems. Englewood Cliffs,
NJ: Prentice-Hall, 1987.

10. Smith, Preston G. and Reinertsen, Donald G. Developing Products in
Half the Time. New York: Van Nostrand Reinhold, 1991.

11. Smith, Preston G. and Reinertsen, Donald G. Shortening the product
development cycle. Research-Technology Management 35(3):44–49
(May–June 1992).

12. Whiting, Rick. Hewlett-Packard’s software initiative from the top. Elec-
tronic Business 18(9):53 (June 1992).

13. Whitten, Neal. Managing Software Development Projects. New York:
John Wiley & Sons, 1990.

14. Zachary, G. Pascal. Showstopper!: The Breakneck Race to Create
Windows NT and the Next Generation at Microsoft. New York: The
Free Press, 1994.

