
Higher Creativity for
Virtual Teams:
Developing Platforms for
Co-Creation

Steven P. MacGregor
IESE Business School, Spain

Teresa Torres-Coronas
University Rovira i Virgili, Spain

Hershey • New York
Information science reference

Acquisitions Editor: Kristin Klinger
Development Editor: Kristin Roth
Senior Managing Editor: Jennifer Neidig
Managing Editor: Sara Reed
Assistant Managing Editor: Sharon Berger
Copy Editor: Joy Langel
Typesetter: Jamie Snavely
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Informaion Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-pub.com
Web site: http://www.igi-pub.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanonline.com

Copyright © 2007 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by any
means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does not indicate a
claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Higher creativity for virtual teams : developing platforms for co-creation / Steven P. MacGregor and Teresa Torres-Coronas, editors.

 p. cm.

 Summary: “This book presents advanced research on the concept of creativity using virtual teams, demonstrating a specific focus and application
for virtual teams. It presents tools, processes, and frameworks to advance the overall concept that leveraging ideas from different locations in an
organization and within extended networks is based on creativity, which can deliver innovation”--Provided by publisher.

 Includes bibliographical references and index.

 ISBN 978-1-59904-129-2 (hardcover : alk. paper) -- ISBN 978-1-59904-131-5 (ebook : alk. paper)

 1. Virtual work teams. 2. Teams in the workplace. 3. Creative ability in business. I. MacGregor, Steven P. II. Torres-Coronas, Teresa, 1966-

 HD66H545 2007

 658.4’022--dc22

 2007007265

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is new, previously-unpublished material. The views expressed in this book are those of the authors, but not neces-
sarily of the publisher.

���

Chapter XII
Enhancing Flexibility in

Dispersed Product
Development Teams

Preston G. Smith
New Product Dynamics, USA

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

IntrOduCtIOn

Dispersed1 product development teams have be-
come increasingly popular over the past decade,
especially with large multinational companies. In
many cases, these teams span multiple continents
and time zones. In order to maintain control over
such a far-flung organization, management gen-
erally imposes procedures and plans so that all
parts of the team remain focused on a common
objective.

While they clearly have their strengths, such
procedures and plans can undercut creativity.
They encourage heavy upfront planning and
reward sticking to plan. In contrast, creativity
requires experimenting, trying things out, and
adjusting as better solutions appear. In short,
dispersed teams are easiest to manage when they
can execute their original plans without change,
but creativity requires change.

This chapter addresses this paradox by intro-
ducing the notion of flexibility in dispersed teams

aBstraCt

Highly creative product development teams are exploring the unknown. Initial plans are likely to change
as they understand better how the customer will use the product they are developing, as competitive
products appear, and as new technologies evolve. Thus, a creative team must remain open to change as its
plans shift. If the team is dispersed (virtual), the complications of dealing with changes in plans magnify.
This chapter provides tools and approaches for being flexible to such changes as creative teams proceed.
These include ways of lowering the cost of change, anticipating change, isolating change, and maintain-
ing options as late as possible. Such tools and approaches will help teams working on highly creative
projects to take advantage of their creativity, even when they are dispersed over time and distance.

 ���

Enhancing Flexibility in Dispersed Product Development Teams

and by showing how one can enhance the flex-
ibility of a team to deal effectively with change.

Creative product development teams need the
flexibility to be able to explore options and make
changes, even late in the development cycle. Un-
fortunately, such flexibility is difficult to achieve,
especially for dispersed teams. This chapter will
explore flexibility and offer flexibility-enhanc-
ing tools aimed at teams spread across various
locations.

what flexibility is and why it is
Important

Flexibility is the ability to make changes relatively
late in a project without being too disruptive. The
later one can make changes or the less disrup-
tive they are, the more flexible the process is.
One usually measures disruption in terms of the
money, labor, or time lost in making the change.
See Figure 1, in which, after the initial planning
period, the restricted flexibility level locks too
much down too early, but the completely flex-
ible level leads to chaos at the end of the project.
Thus, the rate of convergence must be managed
consciously throughout, as shown in the moder-
ately flexible level.

Change can appear in many forms. A com-
mon one in product development is a change in
product requirements, which may occur because
the developers neglected to identify a require-
ment earlier, because feedback from prototypes
or market research has uncovered a new require-
ment, or because a competitor has just offered
new functionality. Technical change is another
source, and it can occur when a new technology
appears, when the capabilities of a technology
expand, or when developers discover weaknesses
or limitations in a technology that they are plan-
ning to use.

Flexibility is important because the essence of
product innovation is change, as discussed below.
Productive innovation benefits from change, and
inhibiting change stymies innovation.

flexibility and Creativity

Product development is the creation of something
that has not existed before, and as one pursues
this creative act, unplanned changes will occur.
Creativity involves generating, assessing, and
choosing among options. Creative professionals
are trained to generate many options without

Figure 1. Three levels of managing flexibility in a development project (Source: 2007 by John Wiley &
Sons; used with permission)

Inflexible

Moderately
flexible

Completely flexible

Ea
se

 o
f m

ak
in

g
ch

an
ge

s

Time from beginning of project

Project approval^

In
it

ia
l f

le
xi

bi
lit

y

Restricted flexibility
Inflexible

Moderately
flexible

Completely flexible

Ea
se

 o
f m

ak
in

g
ch

an
ge

s

Time from beginning of project

Project approval^

In
it

ia
l f

le
xi

bi
lit

y

Restricted flexibility

���

Enhancing Flexibility in Dispersed Product Development Teams

judging them, then to narrow them gradually
toward a final solution.

In effective product development, the customer
drives these choices and the team often implements
them using some type of technology. Customers
often clarify their thoughts as to what they re-
ally want only after they have tried a model or
prototype, and as engineers get into a design and
start testing it, they often find that a technology
does not work as originally envisioned. Thus, the
need for a change arises, and it can arise at any
time during the project.

The more creative the project is in terms of
satisfying new customer desires and the more
adventuresome engineers are in applying new
technology to unmet needs, the more change is
likely to occur. Effective innovation encourages
such change, and resisting change inhibits in-
novation.

James Adams, author of the classic on cre-
ativity, Conceptual Blockbusting (Adams, 1974),
connects creativity and change thus: “Creativity
and change are two sides of the same coin. They
are often linked, in that creativity is needed to
respond successfully to change and creativity, in
turn, results in change” (Adams, 1986, p. 3).

There are alternatives for dealing with changes.
One is to discourage them after a certain initial
point in the project (“freezing” the design), but
this will clearly diminish creativity and result in
inferior products as better information arrives later
in the project. Another is attempting to predict
change, but this is likely to be frustrating and
result in a rigid process that impedes creativity.
Perhaps one could hope that change will not oc-
cur and then deal with it when it does, but such
behavior will erode project performance, because
developers will not be prepared to deal with change
when it occurs.

Consequently, this chapter takes the position
that change will occur and applies practices that
will diminish the impact of changes, even when
they occur relatively late in the project. In short,
the goal is to put practices in place that will allow

the team to accommodate and even to embrace
change. For a dispersed team, these practices must
work in a dispersed environment.

BaCKGrOund

Change—even disruptive change—is becoming
more common and more frequent in business today
(Brown & Eisenhardt, 1998). This is especially
true in new-product innovation (Christensen &
Raynor, 2003; Christensen, Anthony, & Roth,
2004). On the other hand, business managers,
hard-pressed to perform under competitive stress,
are moving toward more sure-fire methodologies
that focus on minimizing variation and eliminat-
ing mistakes, waste, and rework. These include
phased development, such as Stage-Gate®2 (Coo-
per, 2001), Six Sigma (Eckes, 2003), and lean
product development (Mascitelli, 2004).

Phased development organizes the product
development process so that important steps,
especially in the front end, are not skipped. Six
Sigma, as its name suggests, continually refines
business processes to minimize variation. And
lean development, which has grown out of lean
manufacturing in several different directions,
centers on strengthening processes to eliminate
waste. This can either be waste in the design phase
or downstream in the manufacturing phase. As
different as these approaches are, however, they
all have one characteristic in common: they all
attempt to improve the business by strengthening
processes.

Strengthening processes has been beneficial
in general—but it carries with it a side effect. It
tends to make the process rigid so that it must be
followed and cannot be changed easily. Conse-
quently, as management moves toward stronger
business processes, they tend to move away from
flexibility.

As discussed, flexibility is connected with
change and innovation. Predictably, as firms
move away from flexibility, they are having more

 ���

Enhancing Flexibility in Dispersed Product Development Teams

difficulty being really innovative with their new
products. This is reflected in recent data, which
show that from 1990 to 2004, more innovative
products (new-to-the-firm products and new-to-
the-world products) have declined substantially
in product portfolios while safer ones (additions,
improvements, and modifications to existing
products) requiring less flexibility have increased,
as shown in Figure 2.

Although flexibility is a new topic in nonsoft-
ware product development, the software develop-
ment community has practiced it for several years
under the name of agile development. Larman
(2004) provides an overview of agile develop-
ment, including descriptions of several popular
agile methodologies. Boehm and Turner (2004)
show how to balance the need for agility and the
need for discipline on a specific project and, in
the process, illustrate the factors that determine
whether a given project should follow a more fluid
or a more structured process.

Lessons from the agile software arena point
the way for flexible development and establish
the guiding principles and values. Yet it is not
possible to apply the techniques of agile software
development directly to nonsoftware projects.
Several characteristics unique to the software
medium allow the agile tools to work there, for

example, object technologies and the ability to
automate the build process so that the team can
build an update of the product cheaply and daily.
In general, these characteristics do not apply
to other types of products, so for nonsoftware
products the need exists for solutions other than
the agile development tools in order to enhance
flexibility.

usInG flexIBIlIty tOOls and
aPPrOaCHes

The tools and approaches described in this chapter
work in various ways to improve flexibility:

•	 They may isolate or encapsulate change so
that a change does not ripple through the
whole product causing massive redesign.

•	 They may allow one to move ahead iteratively
with lots of feedback when it is not possible
to see very far ahead.

•	 They may expose new options through
experimentation and intentional expansion
of the design space.

•	 They may keep options open longer by de-
laying decisions (but still without affecting
the project’s overall schedule).

Figure 2. Product innovation has decreased dramatically since 1990 (Source: Cooper, 2005. Figure
copyright 2007 by John Wiley & Sons; used with permission)

-60 -40 -20 0 20 40 60 80 100

New to the world

New to the company

Additions to
existing products

Improvements and
modifications to

existing products

Percent change 1990-2004 in portion of the product portfolio

��0

Enhancing Flexibility in Dispersed Product Development Teams

•	 They may reduce the cost of change by main-
taining backup positions or understanding
the consequences of a choice.

These tools must be used selectively. Each
tool has types of projects where it fits well and
others where it fits poorly. Just as with a set of
mechanic’s tools, it is not a matter of using all of
the tools for every job but one of selecting the
tools that fit each job and using an appropriate
combination. In general, each project will require
a different combination.

However, one lesson that carries over from
agile software development is that the tools tend
to fit together in a mutually supportive way (Beck,
2000, Chapter 11). There are synergistic effects of
combining the tools. Consequently, do not focus
on just one tool, but try to apply a group of them
that will support each other.

In most cases, a tool focuses selectively on
anticipated types of uncertainty. Usually, it is not
possible, or economical to encompass all types
of uncertainty with one application of a tool or
approach, and providing flexibility in one area
may limit your flexibility in another area. Thus,
it is usually necessary to make choices as one
proceeds as to where change is most likely to oc-
cur and focus the tools on areas where flexibility
might have the greatest payoff in allowing change
with little disruption.

As Boehm and Turner (2004) illustrate, these
tools and approaches can have undesirable side
effects. Flexibility and stability need to be bal-
anced, and the more dispersed a team is, the more
the balance is likely to shift toward stability—to
the detriment of creativity.

tHe tOOls and aPPrOaCHes

This section covers eight types of tools and ap-
proaches that enhance flexibility:

•	 Customer understanding
•	 Product architecture
•	 Experimentation
•	 Set-based design
•	 Product development teams
•	 Decision making
•	 Project management
•	 Development process

After describing each tool, the chapter closes
with further discussion on how they can be
combined.

Customer understanding

It is fundamental that the needs of customers
drive the development of successful products.
Good practice normally is to assess the needs of
customers, capture the essence of these needs in
a document often called a product specification,
and design according to this specification. Seldom
does this work well in actual projects:

•	 Writing is an inadequate medium to describe
the complexities of customer use or customer
desires.

•	 Often time pressure forces developers to
start designing before they have all customer
requirements.

•	 Customer usage patterns are complex and
change over time.

•	 What is essential to one customer is unim-
portant to another.

•	 Customers change their minds after they
see how a product works.

•	 Customers use products in ways never con-
sidered by the designer.

This means that the specifications will change
over the course of development. Depending on
how innovative the product is, they could change
a little or a great deal.

The first tool for dealing with such changes
is to build an early warning system, that is, a

 ���

Enhancing Flexibility in Dispersed Product Development Teams

system to alert you to changes in the customer
environment and allow you to check out your
designs early. There are no standard prescriptions
for doing this, because experience shows that the
best solutions invariably are the ones created by
a company to meet its specific needs. But here
are some guidelines:

•	 To get advance notice of potential changes,
get in touch with lead users, as popularized
by von Hippel (1994). These are the people
who are leading change and are likely to
modify your product to suit their leading
requirements.

•	 Get the designers themselves in direct
contact with users of the product. They see
different things than marketing or sales
staff, which inadvertently filter out valuable
clues.

•	 Get in touch early in the project, and—most
importantly—keep in touch throughout the
project. You never know when change will
occur!

•	 To balance exceptional or noncharacteristic
incidents that designers might see in isolated
cases, have marketing people survey the
customer arena regularly to provide balance
and interpretation of incidents.

In most cases, a dispersed team will have
additional challenges in putting its designers
in ongoing contact with customers. Because
economics often drives dispersion, your design-
ers are likely to be in a low-wage region of the
world, such as India or China, while your intended
customers are located in a wealthier region of the
world, such as North America or Europe. Thus,
putting designers in contact with customers may
be a challenge.

Another approach is to emphasize product
descriptions at a level that is less likely to change.
For instance, most developers work from a product
specification that is a detailed list of features or
requirements. Such details are almost bound to

change as you learn more about your customers
and the design space. Instead, place primary
emphasis on a product vision (Clark & Fujimoto,
1990), which is a short statement (100-200 words)
that describes the distinctive characteristics of
this product relative to other products within the
company’s portfolio, or indeed the competition.
The vision is far less likely to change.

Related approaches that center on aspects less
likely to change are ones that attempt to capture
the customer. One is personas (Cooper, 1999),
which are descriptions of archetypes of predomi-
nant classes of users, each carefully created from
methodical customer research. Suppose you were
designing a waterproof digital camera, and your
primary persona were Jeslyn, a white-water kay-
aker. Then if you were considering a change in
camera operation that would require two hands
on it, someone would immediately object, “We
can’t do that! Jeslyn will have the paddle in her
other hand.” A similar tool is use cases, which
software engineers use to describe how a user
would interact with a product to perform a certain
task (Cockburn, 2000).

Product architecture

Just as one may put fences around pastures to
avoid chasing livestock across the countryside,
one places “fences” around chunks of a product
to contain design changes to relatively small parts
of the product.

There is lots of talk about product architecture,
but it is a rather abstract subject addressed from
many different perspectives. It is therefore useful
to start with an example of an architectural choice.
Figure 3 shows two different architectures of a
corded telephone. Both of them share the same
functional schematic, but the architect chose to
put the keypad function in different chunks of
the physical product.

From this figure follows a useful definition of
product architecture: Architecture is the way in
which the functional elements of a product are

252

Enhancing Flexibility in Dispersed Product Development Teams

assigned to its physical chunks and the way in
which those physical chunks interact to achieve
the product’s overall function.

One reason this is a confusing subject is that
designers can use architecture to achieve many
different ends, so each person discusses it in terms
of what he or she wants to achieve. Some possible
objectives include:

•	 Product development flexibility (our objec-
tive)

•	 Manufacturing flexibility
•	 Product distribution flexibility
•	 Time to market
•	 Product serviceability

Each objective will result in a different archi-
tecture. It follows that architecture is a strategic
decision, and you must choose your business
objective before you can create an appropriate
architecture.

Even narrowing to product development flex-
ibility, there are still architectural choices to be
made. Usually, it is expensive or impossible to
find one architecture that will facilitate any kind
of design change. Thus, one must make some
assumptions as to where change is most likely to
appear and design the architecture accordingly.

An important consequence is that architec-
tural choices should not be technical decisions
but instead business decisions. This may seem
obvious, but too many companies turn such deci-
sions over to their engineers and thus forfeit the
business benefits.

Product architectures span the range from
modular to integral, as illustrated in Table 1. Each
approach has its place, and most implementations
are somewhere between these two extremes.
Modular architectures are advantageous for flex-
ibility, because they allow us to place “fences”
around portions of the product most likely to
change so that the change is limited to that por-
tion of the design. The fences are actually called
interfaces, and interface design and location is
thus a critical part of organizing a product for flex-
ible development. Like fences, developers must
maintain interfaces consistently over time or they
will decay and lose their “fencing” power.

What is special here for dispersed teams? First,
recognize that architectural choices are important,
and they are made quite early in the project (often
even in preceding projects!). Because these are
business decisions, you will somehow have to as-
semble your dispersed business team early in the
project to plan the architecture for flexibility—or
whatever other business objective you choose. Do

Figure 3. Two different architectures for a corded telephone (Source: Copyright ©2007 by John Wiley
& Sons; used with permission)

Electronics

Microphone Earpiece

Keypad

Functional schematic
of a telephone

Line

One

architecture

Another
architecture

Electronics

Microphone Earpiece

Keypad

Functional schematic
of a telephone

Line

Electronics

Microphone Earpiece

Keypad

Functional schematic
of a telephone

Line

One

architectureOne

architecture

Another
architecture

Another
architecture

Electronics

Microphone Earpiece

Keypad

Functional schematic
of a telephone

Line

Electronics

Microphone Earpiece

Keypad

Functional schematic
of a telephone

Line

One

architectureOne

architecture

Another
architecture

Another
architecture

Electronics

Microphone Earpiece

Keypad

Functional schematic
of a telephone

Line

Electronics

Microphone Earpiece

Keypad

Functional schematic
of a telephone

Line

One

architectureOne

architecture

Another
architecture

Another
architecture

 ���

Enhancing Flexibility in Dispersed Product Development Teams

not assign this task to the engineering team, even
if it is all in the same location.

Second, you will need to designate someone to
maintain the architecture. Although an engineer
should not be the primary creator of the architec-
ture, an engineer might be the ideal candidate to
be responsible for maintaining it, because most
of the violations are likely to arise in engineering
as designers make design compromises.

experimentation

In a project with little change—and thus little
creativity—traditional methods of project plan-

ning, management, and control work well and are
efficient. When change is commonplace, planning
requires a shorter horizon, and management
and control take on more of a cut-and-try style.
Cut-and-try is just another name for experimen-
tation, which could encompass formal or quick
experiments, simulations or analysis, prototypes
or mock-ups, models, tests, and tryouts.

Not only does experimentation assume a
central role in the flexible approach, but recent
developments in experimentation technology
have made many types of experiments ten to 100
times faster, cheaper, and more effective (Thomke,
2003). Many managers shift to these new tech-

Table 1. Comparison of modular and integral architectures (Source: Copyright ©2007 by John Wiley
& Sons; used with permission)

Note: * Walkman is a registered trademark of Sony Corporation.

Type of Architecture Modular Integral

Characteristics Chunks are decoupled, operate independently All portions are interdependent

Example Desktop Personal Computer Walkman®*

Advantages Can change design easier, test independently, reuse portions Cheaper to make, lighter, more compact

Limitations Planning time, performance weaknesses, integration burden Difficult to change, late testing

Table 2. Observe the great differences between traditional and front-loaded prototyping, which open up
possibilities for more iterative processes that fit with changing environments (Source: Copyright ©2007
by John Wiley & Sons; used with permission)

Traditional
prototyping

Front-loaded
Prototyping

Number of prototypes Few Many

When used in development Late Throughout

Prototype’s objective Verify Learn

Prototype cost High Low

Prototype build time Slow Quick

Prototype attractiveness Refined Perhaps crude

Prototype’s scope Broad, vague Narrow, specific

Departmental orientation Primarily engineering Any and all departments

���

Enhancing Flexibility in Dispersed Product Development Teams

niques and pocket the savings. Others recognize
that such great improvements open new process
possibilities, as Thomke and others (Smith, 2001)
have shown. Specifically, they allow you to run
many more experiments, run them much earlier
in the development process, and use them for
learning and direction rather than their traditional
role of verification. Table 2 contrasts a traditional
with a so-called front-loaded process. Although
this table is specifically for prototyping, it applies
similarly for other types of experimentation.

Projects with little change benefit from an
established process and known steps to reach a
predetermined goal. With lots of change, the de-
velopment team has little or none of this benefit.
It must operate in a more iterative, cut-and-try
mode. Experimentation fits this mode perfectly,
but it requires a new mode of operating, as shown
in Figure 4. This loop starts with a formulated
hypothesis for the outcome of the initial experi-
ment and repeats throughout the project. In fact
there are likely to be multiple loops (experiments)
proceeding simultaneously.

The key part of this loop is the hypothesis,
which serves to focus the experiment and enable
drawing actionable conclusions. If you wish to
test two hypotheses, it is usually best to run two
experiments.

Failure plays a critical role in such hypothesis-
based experiments. Corporate cultures usually

discourage failures while paying lip service to
accepting them. But there is something much
more fundamental at stake. If your hypothesis
is that the experiment will succeed and it does
succeed, you haven’t learned much (the purpose
of an experiment is to learn so that you can move
forward). Consequently, if you plan a sequence
of experiments with success as the expectation
and success as the outcome, progress will be slow
(little learning). In contrast, the experiments from
which you learn the most are those where a priori
expectation is a 50-50 split between success and
failure. This is how you should plan each loop for
maximum rate of progress.

Thomke makes another important point about
failure. He distinguishes between failures and mis-
takes. Mistakes are poorly planned experiments
or ones with uncontrolled extraneous variables.
With these, when you reach the end of the loop in
Figure 4, you cannot reach clear conclusions, and
the experiment is wasted. Failures are valuable,
but avoid mistakes.

Regarding the aversion to failure, corporate
cultures often discourage the early, quick-and-
dirty prototypes that might expose one’s igno-
rance. Although designers are taught in university
to make lots of simple prototypes early to explore
options, many corporate cultures actually reward
refined prototypes made late in the process when
most uncertainties are resolved. For instance, see

Figure 4. An iterative experimentation process (Source: Copyright ©2007 by John Wiley & Sons; used
with permission)

Formulate
hypothesis

Plan
experiment(s)

Build
experiment(s)

Assess
experiment(s)

Draw
conclusions

Start

Finish

 ���

Enhancing Flexibility in Dispersed Product Development Teams

Kelley and Littman (2001), which is the story of
the renowned product development firm, IDEO.
Although this book touts quick, early prototypes,
the books photos reveal only beautiful, late-stage
prototypes.

The conclusion: although supporting failure
and quick-and-dirty prototypes are well-known
means of facilitating innovation and are given a
great deal of lip service, fitting these styles into
a corporate environment will require ongoing
effort and executive support.

For dispersed teams, experiments present
special challenges, because many experiments,
by nature, exist in only one location. A test is
run in a specific laboratory, and the broken parts
that may result exist only there. A prototype is
built in only one model shop. A simulation is
run on one engineer’s computer. Thus, with a
dispersed team, there is the added challenge of
dispersing experimental artifacts and results.
Some experimental tools work well for this. For
instance, an especially fast and inexpensive type
of rapid prototyping system is called a conceptual
modeler (Smith, 2001), or more colorfully, a 3D
printer, because when connected to a desktop
computer, it “prints” three-dimensional plastic
parts. If connected to a remote computer over
the Internet, it thus becomes a so-called 3D fax
machine that can provide prototypes to remote
members of the team in real time.

set-Based design

Set-based design comes from Toyota’s thoroughly
studied “lean” product development process.
Because Toyota is generally regarded to have the
best automotive development system in the world
(Sobek, Ward, & Liker, 1999), this unusual and
somewhat counterintuitive system has attracted
much attention.

Consider a simple nondesign example to con-
vey the concept. Suppose that Emery (leader),
Susan, and Walter need to meet. Emery suggests
Tuesday at 10:00, to which Walter immediately

objects (out of town). So Emery proposes Thursday
at 3:30, but Susan has a conflict then. This con-
tinues for several more iterations—and it would
be even more difficult if the participants were in
different time zones. Such a process corresponds
to a conventional so-called point-based methodol-
ogy. The parallel in set-based operation would be
for Emery first to ask Susan and Walter for their
calendars for the week. Then he picks a clear time
for all of them. Not only are they finished quickly,
but Emery has some back-up meeting times in case
the primary one fails. Observe that contemporary
information technology, such as Microsoft® Out-
look®3, facilitates set-based scheduling, and this
works equally well for a dispersed team.

Conventional point-based design technique
is based on making choices. The designer keeps
making choices at forks in the road to improve
the design until it is good enough. In contrast,
set-based design operates on constraints. The
designer explores the constraints that limit the
design, for instance:

•	 Which types of solutions won’t work?
•	 What would be too expensive or take too

much time?
•	 What would have reliability or safety prob-

lems?
•	 What would be difficult to manufacture?

The objective is to see how much of the design
space is open and where it is open rather than to
arrive at a design immediately.

Toyota follows the constraints approach for
different reasons than those enhancing flexibility
do. For Toyota, exploring the design space results
in better, more robust solutions because the
point-based approach may proceed into an area
that is suboptimal, and they would not know this
because they would have no visibility into other
areas; they remain unexplored. More importantly,
with point-based processes, developers may go
out on a branch that does not work out and have
to retreat. Thus, although progress may be slower

���

Enhancing Flexibility in Dispersed Product Development Teams

in set-based, they are much less likely to have to
back out and find a new route. That is, design
convergence is far more likely.

The advantage of set-based design for flex-
ibility is that it defers decisions. Deferred deci-
sions are discussed shortly, but the idea is that
developers will not have to reverse a decision
that they have not made yet. This maintains our
options and our flexibility as long as possible.
The team spends its early time not on making
decisions that might have to be changed but on
assembling information on their constraints and
options so that they can make decisions quickly
and confidently when the time comes.

Figure 5 illustrates how a set-based design
progresses. As the team discovers additional
constraints, the design space shrinks at a con-
trolled rate (not too fast, not too slow), by adding
constraints progressively to shrink the design
space. This continues to leave space to maneuver,
although the maneuvering space shrinks to the
best solution over time. This convergence rate
is Toyota engineering management’s primary
lever for controlling the set-based process. They
want the space to shrink continuously but not
too quickly.

Toyota’s application to automobile design is a
mature product area. Set-based design is effective
for modest uncertainty, as one would encounter

in automobile design. When uncertainly is great,
however, one could converge into a solution
space that turned out to be inadequate. In such
cases, one faces so-called unknown unknowns
(unk unks), where assumptions of convergence
and nearby solutions are often unfounded (Loch,
deMeyer, & Pich, 2006). Experimentation is a
better approach here.

Dispersed teams pose no major challenges for
set-based design. Toyota uses it in their functional
organization, in which the members of one de-
velopment project are dispersed throughout the
facility, although generally all in the same city. It
is mostly document-based, as practiced at Toyota.
The process is not simple, however. They apply
it with lots of training and mentoring, which is
the company culture.

Product development teams

As discussed earlier in the “Background” section,
the principles and values of flexible development
stem from agile software development. One value
that is central to agile development and embed-
ded in every agile methodology is that people
are more important than process. This comes
directly from the Agile Manifesto (Beck et al.,
2001), which compares four values that set agile
projects apart from traditional ones. The first of

Figure 5. The team manages set-based design to converge at a desirable rate (Source: Copyright ©2007
by John Wiley & Sons; used with permission)

 ���

Enhancing Flexibility in Dispersed Product Development Teams

the four comparisons states that people and in-
teractions are more important than processes and
tools. Thus, this “Product Development Teams”
section should be placed at the top of this discus-
sion—but you will notice that the Process section
falls last for this reason.

This said, this is an entire book about teams,
and you will find countless dispersed team insights
and tools throughout it. Consequently, this sec-
tion will be short to cover only two tools that you
might overlook otherwise.

The first tool is to establish the team’s author-
ity clearly. If you think about the environment in
which teams operate, you might notice that the
team needs certain types of authority to operate
effectively. For example, the team may find that in
order to be most creative, it needs to be able to:

•	 Remove a cynic from the team
•	 Have an on-demand account at a local model

shop
•	 Have a 3D fax machine (see above) in its

Singapore office
•	 Set its work hours in each facility

Thinking more broadly, you will find that
someone in every company needs the authority
to make dozens of types of decisions regarding a
project, such as a decision to hire staff, a decision
to proceed to the next phase of the project, and
a decision to invest in buildings and equipment.
Try creating such a list specifically for your or-
ganization. It is likely to have about 50 types of
authority on it.

This list is useful for two purposes. First, you
may observe that the team and management are
unclear on just what kinds of authority the team
has. Often, management assumes that the team
has a certain type of authority, but the team is
reluctant to move ahead because management
has not granted this authority explicitly. Thus, the
team is hamstrung by an unclear set of operating
rules. The solution is for the team to discuss the
aforementioned list of authorities with manage-

ment and agree explicitly both on the team’s areas
of authority and on where the team will need to
obtain management approval.

Also, you can perform a triage on your list.
You will find that some kinds of authority the team
clearly already has, so they are not issues. Other
types the team does not need or want (they are more
work than they are worth, for instance), such as
obtaining a new building. But in the middle there
are likely to be a few types of authority that the
team does not have now but it could operate more
effectively if it did have this authority. Then you
can discuss this short list with management.

The second tool is partial colocation. By
definition, a dispersed team is not colocated.
But there are clear advantages to colocation for
creative teams. Fortunately, once you appreciate
what it is that makes colocation valuable, you can
find ways of approximating these characteristics.
For instance, if the team has one chance to come
together as a team, ensure that this happens at the
beginning of the project, when it is most valu-
able. Try to colocate clusters of team members
in a location. If your members are split among
three locations, for example, make sure that all
team members in each location are colocated.
And make sure that your communication media
work for you; for example, if delays in e-mail
response are slowing the team down, establish
team protocols on how quickly an e-mail will
receive a reply.

decision making

If you dissect the product development process
down to its core, you will find that the core process
is decision making. The literature has emphasized
the few major decisions that come at the end of
phases (Deck, 2002), but more important are the
thousands of daily decisions made by the team
and by individuals as they work their way for-
ward in the design. These decisions cumulatively
determine not only the quality and attractiveness

���

Enhancing Flexibility in Dispersed Product Development Teams

of the resulting product but also the performance
level of the development team.

How you approach these many decisions should
be determined by what you wish to emphasize
in your development. If speed of development
is your priority, you should find a way to make
such decisions quickly. If productivity (products
developed per unit of resources) is your objective,
accurate decisions (do it right the first time) should
drive your process. And if your first priority is
flexibility, you should make decisions in a way
that facilitates flexibility.

The key to making flexible decisions is not to
make them until you have to, because you have
more flexibility before you commit to a decision.
This leads to the concept of the last responsible
moment. The last responsible moment is the earli-
est time when:

•	 An important option expires
•	 The decision goes onto the critical path
•	 The expense of carrying the decision rises

dramatically

It is important to recognize that this is not
procrastination. On the contrary, one actually
works quite hard on the decision from the time
that one sees that a decision will be needed until
actually making it by collecting information that
will support making a better decision when its time
comes. That is, you defer the decision itself, but
you do not defer the data collection and analysis
needed to make the decision. This results in not
only more flexibility but also in better decisions,
because they are based on fresher, more complete
information.

The last responsible moment should not be
applied to all decisions. Sometimes the decision
is clear (only one reasonable choice) or it can be
reversed easily later if necessary. Then the deci-
sion can be made early so that it is not a threat to
the critical path.

Many analytical and computer-aided tools
are available to help make decisions. Savage

(2003) provides several, complete with support-
ing software. One is decision trees, which is a
graphical technique that lays out a sequence of
linked decisions together with the uncertainties
involved so that one can see the complete picture
before committing to the first decision. Another
tool is Monte Carlo simulation, which allows the
decision to be “played out” involving uncertainty
to understand what the probability distribution of
the outcome will be.

Consensus is an important part of group deci-
sion making, especially for a dispersed team. Many
decisions require the consensus of several parties
with interests in the decision. This is more than
just being nice. If you do not take the dissenters’
opinions into account when you make the decision,
dissenters are likely to undermine future activity
related to the decision. Thus, consensus means
full agreement to move forward together.

Obtaining such agreement can be difficult for
dispersed teams. One tool that is helpful here is a
consensus gradient. Everyone involved votes on
the proposition under discussion using a carefully
arranged scale that goes from full agreement to
veto, such as:

1.	 Completely agree and commit
2.	 Agree (and commit)
3.	 Don’t disagree (but commit)
4.	 Some reservations (but commit)
5.	 Veto

You tally the results first by addressing the
vetoes. Any vetoes must be resolved to have a
consensus. Then see if there is a preponderance
of votes in categories 3 and 4. If so, there is little
energy behind the proposal and it is likely to
die.

Note that the consensus gradient is easy to
use in a dispersed environment, once team mem-
bers understand how to use it. Beyond this, in a
dispersed environment, you will need to ensure
that the communication channels are wide open
to facilitate good decision-making. For example,

 ���

Enhancing Flexibility in Dispersed Product Development Teams

ensure that delays in responding to e-mails (men-
tioned earlier) are acceptable.

Project management

The contrast between a flexible project and a
traditional one is perhaps greater in the project
management area than in any other. The Agile
Manifesto (Beck et al., 2001) illustrates this for
software projects, but the contrast also carries
over to nonsoftware projects.

Consider project planning. The traditional
way of doing this is to plan the whole project in
uniform detail from beginning to end. However,
agile software developers produce only an over-
view plan of the whole project initially and then
plan the details of each iteration as they enter
it. In fact, the team often does the final level of
planning within iteration as it proceeds. The
process they use is similar to the rolling-wave
project planning approach that is applicable to
nonsoftware projects (Githens, 1998).

Another contrast with traditional project
management is in how the team views corrective
action. Traditionally, corrective action is “Docu-
mented direction for executing the project work to
bring expected future performance of the project
work in line with the project management plan”
(PMI, 2004). In contrast, because agile and flex-
ible developers place less credence in the overall
project plan, they are just as likely to suspect the
plan as the execution when execution does not
match the plan and correct whichever one they
find to be wrong.

More broadly, the two approaches view the
project objective—and thus what constitutes
project completion—differently. In general,
traditional project managers work to complete
a list of deliverables that they established at the
project outset. When they deliver all of these,
the project is complete. Again, agile and flexible
development managers place less emphasis on
the original list of deliverables, because it, or
whatever was influencing it, may have changed.

Thus, they must look more fundamentally at
delivering value to the customer. This is clearest
to see in software information technology (IT)
projects, where an actual customer is likely to be
on the development team, and the team delivers
features in iterations. At the end of each iteration,
the team and the customer jointly decide if they
have delivered enough value to call the project
complete. Notice that this could include more or
fewer product features than originally planned,
and there is often little commitment to complete
the original list. In nonsoftware projects, the
product is not so easily divisible into features
and value may not be so easy to assess, but the
emphasis is still more on delivering value than
on predefined deliverables.

The development process is different. One
normally views a traditional project as being
sequential, with one task leading to the next
in a progressive manner. But a flexible process
proceeds in a more iterative manner (iteration
is actually a part of a traditional innovation
project too, but it is often ignored in planning).
Observe that Microsoft Project is a popular tool
for planning and scheduling traditional projects.
However, Project will not allow iteration: if you
try to make a task feed back into an earlier task,
you will receive an error message in Project.
Project has no way to escape from iteration, so it
does not allow it.

Finally, project risk management is fundamen-
tally different. In the traditional approach, risk
management is an identifiable set of activities that,
when done well, begin at project planning stage
and are well integrated with other project activi-
ties (Smith & Merritt, 2002). In a fast-changing
project, the risks change often and initial risk
identification is of little benefit, because most
risks are unknown at this point. Consequently,
the entire development process is risk manage-
ment—the iterations; prototyping, testing, and
experimentation; parallel development paths, and
project staffing (Loch et al., 2006).

��0

Enhancing Flexibility in Dispersed Product Development Teams

Data management presents a special dilemma
for flexible teams. In general, agile and flexible
teams eschew detailed documentation and find
simple ways to document things. Often, this means
using wall charts and sticky notes, together with
digital cameras to record them. This is quick and
easy, but it has a couple of problems. One is that
for complex data and projects that require trace-
ability, such as for product requirements in some
regulated industries, such records are difficult to
change frequently. It is usually better to invest up-
front in building a database for project data.

The other problem is that for dispersed teams,
clearly wall charts and sticky notes are not very
portable, so team dispersion must shift the docu-
mentation balance to more formal means than are
needed for a colocated team.

development Process

The contrast between traditional and flexible
approaches carries over into the development
process as well. If you ask someone following a
traditional approach how they develop products,
they are likely to respond with the process they
use: Stage-Gate, PACE®4 (Product And Cycle-time
Excellence), or their own proprietary one. That
is, the process is the centerpiece of their product
development. Those following a more flexible
approach might mention a methodology (Extreme
Programming or Scrum in agile software devel-
opment for example), but such methodologies are
not centered on the process.

In lack of a process to point to, flexible de-
velopers point to a set of values that guide them,
such as the Agile Manifesto (Beck et al., 2001),
or to a set of tools, such as the ones described
previously.

It is important to note that the picture is not
as black and white as presented. Most develop-
ers use a process somewhere between flexible
and structured, as Boehm and Turner (2004)

describes, and the balance tends to shift during
a project from more flexible in the beginning to
more structured at the end. This occurs because
uncertainty decreases during the project while
the amount invested rises, both of which suggest
a more structured approach later.

As we move to a more flexible process, the type
and caliber of people on the team will also shift.
In a flexible environment, people will have to be
comfortable with more ambiguity, and at least
some of them will also need skills to adapt and
create processes as they go, as Cockburn (2002,
pp. 14-18) describes.

A flexible process is likely to be heavily depen-
dent on experimentation. If so, particular attention
should be paid to the capacity to experiment: test-
ing laboratories, model shops, rapid prototyping
machines, and analysis software. This is especially
challenging for a dispersed team, because replicat-
ing such facilities in multiple locations is costly.
Experimentation capacity is critical because if it
is not sufficient, experiments will wait in queue
for completion. Studies of queues show that time
in queue increases dramatically long before one
reaches the rated capacity. This understanding is
vital for using experimentation effectively. The
learning type of experimentation discussed here
loses its value if people have to wait to receive
the learning. They will just have to proceed in
making decisions without it, and then the learning
will not support their decisions.

Finally, if you are building a flexible develop-
ment process, build it up, as Boehm and Turner
(2004) recommends, rather than starting with a
process and trying to remove items. Although the
latter seems attractive and easier, what happens
is that, to be safe, people will be conservative in
removing something that has had value in the
past. Also, it takes a seasoned practitioner to be
capable of judging that an item will not be needed.
The beauty of the flexible approach is that you
can always add later what you didn’t notice you
needed today!

 ���

Enhancing Flexibility in Dispersed Product Development Teams

assemBlInG a KIt Of
flexIBIlIty tOOls

Please reread the section Using Flexibility Tools.
You are likely to gain additional insights from it
now that you understand each of the tools, and it
will be helpful as you assemble the tools to use
on a specific project.

Remember that each project is different and
thus will require a different combination of the
tools. In some cases, a tool may not apply to your
project. For instance, project architecture gener-
ally is not useful with homogeneous products like
paints or plastics. On the other hand, be careful
about excluding a tool just because it may be dif-
ficult to apply. For example, members of a global
product development team located remotely from
their customers could easily dismiss customer
visits as impractical. However, Morgan and Liker
(2006, p. 30) report that a Toyota chief engineer
(in Japan) found it so important to experience
his customer situation in North America that he
explored 50,000 miles of highways in the United
States, Canada, and Mexico, and this gave him
a great deal of understanding to make trade-offs
and changes as development of a new Toyota
model proceeded.

These tools generally have costs or other
undesirable side effects associated with them, so
they must be applied selectively. Use them more
on projects where change is likely and the ben-
efits of change will pay off. Identify the portions
of a product that are most likely to change and
apply them there rather than broadly across the
product. As a project moves from its beginning
toward market introduction, project complexity
and investment increase while uncertainty should
decrease, all of which suggest that you should
reduce the amount of flexibility as the project
progresses.

Be forewarned that simply putting these
tools in place is the easy part. More difficult and
more critical to long-term success is cultivating

the underlying values and culture that support
flexibility.

People naturally gravitate to what is comfort-
able, and uncertainty is uncomfortable. Managers
in particular, like to know what is going to happen,
even if they have to make up a story to satisfy their
need for certainty (Smith, 2005). Consequently,
as much as you might wish to enjoy the benefits
of flexibility quickly, you are more likely to be ef-
fective by starting with a manageable pilot project
using some of your most capable, flexible people
and expanding slowly as your people and manage-
ment gain experience with the flexible approach
(Smith & Reinertsen, 1998, Chap. 15).

By nurturing the adoption of these tools and
approaches, you will develop a greater ability to
make changes during development, and this will,
in turn, provide a supportive environment for the
types of iteration, trials, and exploration that are
necessary for creativity to flourish.

referenCes

Adams, J. L. (1974). Conceptual blockbusting.
Stanford, CA: Stanford Alumni Association.

Adams, J. L. (1986). The care and feeding of ideas.
Reading, MA: Addison-Wesley.

Beck, K. (2000). Extreme programming ex-
plained. Boston: Addison-Wesley.

Beck, K., et al. (2001). Manifesto for agile soft-
ware development. Retrieved April 16, 2006, from
http://agilemanifesto.org

Boehm, B., & Turner, R. (2004). Balancing agility
and discipline. Boston: Addison-Wesley.

Brown, S. L., & Eisenhardt, K. M. (1998). Com-
peting on the edge. Boston: Harvard Business
School Press.

Christensen, C. M., & Raynor, M. E. (2003). The
innovator’s solution. Boston: Harvard Business
School Press.

���

Enhancing Flexibility in Dispersed Product Development Teams

Christensen, C. M., Anthony, S. D., & Roth, E.
A. (2004). Seeing what’s next. Boston: Harvard
Business School Press.

Clark, K. B., & Fujimoto, T. (1990). The power
of product integrity. Harvard Business Review,
68(6), 107-118.

Cockburn, A. (2000). Writing effective use cases.
Boston: Addison-Wesley.

Cockburn, A. (2002). Agile software development.
Boston: Addison-Wesley.

Cooper, A. (1999). The inmates are running the
asylum. Indianapolis, IN: SAMS/Macmillan.

Cooper, R. G. (2001). Winning at new products.
Cambridge, MA: Perseus.

Cooper, R. G. (2005). Your NPD portfolio may
be harmful to your business’s health. Visions,
29(2), 22-26.

Deck, M. J. (2002). Decision making: The over-
looked competency in product development. In
P. Belliveau, A. Griffin, & S. Somermeyer (Eds.),
The PDMA toolbook for new product development
(pp. 165-185). Hoboken, NJ: John Wiley.

Eckes, G. (2003). Six sigma for everyone. Hobo-
ken, NJ: John Wiley.

Githens, G. D. (1998, October). Rolling wave
project planning. The 29th Annual PMI Seminars
& Symposium, Long Beach, CA.

Kelley, T., & Littman, J. (2001). The art of in-
novation. New York: Doubleday.

Larman, C. (2004). Agile and iterative develop-
ment. Boston: Addison-Wesley.

Loch, C. K., DeMeyer, A., & Pich, M. T. (2006).
Managing the unknown. Hoboken, NJ: John
Wiley.

Mascitelli, R. (2004). The lean design guidebook.
Northridge, CA: Technology Perspectives.

Merriam-Webster. (2000). Merriam-Webster’s
Collegiate Dictionary (software ed., Version 2.5).
Springfield, MA: Merriam-Webster, Inc.

Morgan, J. M., & Liker, J. K. (2006). The Toyota
product development system. New York: Pro-
ductivity Press.

PMI (2004). A guide to the project management
body of knowledge (PMBOK® Guide, 3rd ed.).
Newtown Square, PA: Project Management
Institute.

Savage, S. L. (2003). Decision making with insight.
Belmont, CA: Brooks/Cole.

Smith, P. G. (2001). Using conceptual model-
ers for business advantage. Time-Compression
Technologies, 6(3), 18-24.

Smith, P. G. (2005). Why is agile development
so scary? Agile Project Management Advisory
Service (Cutter Consortium), 6(9), 1-3.

Smith, P. G., & Merritt, G. M. (2002). Proac-
tive risk management. New York: Productivity
Press.

Smith, P. G., & Reinertsen, D. G. (1998). Devel-
oping products in half the time. Hoboken, NJ:
John Wiley.

Sobek, D. K., II, Ward, A. C., & Liker, J. K.
(1999). Toyota’s principles of set-based concur-
rent engineering. Sloan Management Review,
40(2), 67-83.

Thomke, S. H. (2003). Experimentation matters.
Boston: Harvard Business School Press.

von Hippel, E. (1994). The sources of innovation.
New York: Oxford University Press.

endnOtes

1 This author believes that virtual, in the con-
text of teams, is poor terminology, because

 ���

Enhancing Flexibility in Dispersed Product Development Teams

virtual means, “being such in essence or
effect though not formally recognized or
admitted.” (Merriam-Webster, 2000) Teams
are all about performance, and such cloudy
terminology weakens teams’ performance
orientation. Therefore, dispersed is used in
place of virtual in this chapter.

2 Stage-Gate is a registered trademark of the
Product Development Institute.

3 Microsoft and Outlook are registered trade-
marks of Microsoft Corporation.

4 PACE is a registered trademark of PRTM.

