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An Adaptive Process Model to Support Product
Development Project Management
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Abstract—Projects are temporary allocations of resources com-
missioned to achieve a desired result. Since each project is unique,
the landscape between the current state (the start of the project)
and the desired state (the successful end of the project) is often
dynamic, uncertain, and ambiguous. Conventional project plans
define a set of related activities (a work breakdown structure and
activity network) with the assumptions that this set is necessary
and sufficient to reach the project’s desired result. Popular mod-
els for project planning (scheduling, budgeting, etc.) and control
are also based on a set of project activities that are specified and
scheduled a priori. However, these assumptions often do not hold,
because, as an attempt to do something novel, the actual path to
a project’s desired result is often revealed only by the additional
light provided once the work is underway. In this paper, we model a
product development process as a complex adaptive system. Rather
than prespecifying which activities will be done and when, we set
up: 1) a superset of general classes of activities, each with modes
that vary in terms of inputs, duration, cost, and expected benefits;
and 2) simple rules for activity mode combination. Thus, instead
of rigidly dictating a specific project schedule a priori, we provide
a “primordial soup” of activities and simple rules through which
the activities can self-organize. Instead of attempting to prescribe
an optimal process, we simulate thousands of adaptive cases and
let the highest-value process emerge. Analyzing these cases leads
to insights regarding the most likely paths (processes) across the
project landscape, the patterns of iteration along the paths, and the
paths’ costs, durations, risks, and values. The model also provides
a decision support capability for managers. For researchers, this
way of viewing projects and the modeling framework provide a
new basis for future studies of agile and adaptive processes.

Index Terms—Adaptive processes, agile project management,
process modeling, product development, project management.

I. INTRODUCTION

A PROJECT is “a temporary endeavor undertaken to create a
unique product, service, or result” [86]. Thus, it represents

an attempt to do something that has never been done before, at
least not in a particular set of circumstances. A product devel-
opment (PD) project consists of a myriad of multifunctional
activities, all (hopefully) working together to produce the infor-
mation that will reduce the risk of the outcome being something
other than what the project’s stakeholders desire [12]. Since
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doing something complex, novel, and expensive is challenging
and risky, a plethora of models has emerged to improve our
understanding of PD projects, processes, and the management
thereof.1

However, most traditional project models, plans, and tools
make a critical assumption about the goal of a PD project that
is quite limiting in practice, even when the goal is known and
fixed. These models assume that the path to reach the goal (i.e.,
a predetermined set of activities and dependencies) is known
and will be sufficiently efficient and effective. Yet, this is rarely
the reality in PD: the planned set of activities may be both insuf-
ficient and partly unnecessary. When the path to the destination
is unclear, it is no wonder that so many PD projects are “chal-
lenged” or fail. For example, in a survey of over 250 000 small
software PD projects, the Standish Group [108] reports that only
28% succeeded, while 23% failed and 49% were “challenged,”
meaning they were either late, over budget, or had fewer features
or functions than originally specified.

The unclear path to a project’s goal has been discussed in
the literature in terms of process uncertainty and ambiguity.
Both stem from a lack of knowledge about a problem at the
time of making a decision affecting its solution. Researchers
have essentially categorized uncertainty as “knowing what you
don’t know” and ambiguity as “not knowing what you don’t
know” [97], [99] and furthermore into a spectrum from vari-
ation, to foreseen uncertainty, to unforeseen uncertainty (am-
biguity), to chaos [30], [68], [84]. Since greater amounts of
ambiguity characterize PD projects, the traditional methods
and tools of project management provide less value. Moreover,
project managers’ and participants’ attitudes and aptitudes must
change [31], [68], and presumably also their models, methods,
and tools. While ambiguity is clearly a source of risk for PD
projects, it can also bring opportunities to organizations capable
of effectively sensing the endogenous and exogenous changes
and responding to them efficiently by adapting to the changed
conditions [43]. Indeed, PD projects capable of coevolving with
their environments and dynamic stakeholder needs can profit
from the accelerating pace of change in market needs [34], [37].

In response to the realities of process and goal uncertainty,
ambiguity, and instability in projects, some advocate nontradi-
tional approaches to project management such as extreme [4],
adaptive [48], flexible [69], response-able [35], lean [88], ag-
ile [47], etc. These have gained particular traction in software
PD [89], although they may not apply as readily to complex

1See [18] for a review of PD process modeling paper. See [74], [86] for
overviews of project management knowledge. See [23], [117] for overviews of
PD issues and methods. See [68] for an overview of managing projects under
uncertainty.
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hardware PD and large, safety-critical software PD [6]. Never-
theless, it seems clear enough that the assumptions underpinning
the conventional models and tools for PD project planning and
control do not always hold [59], [123], and that these mod-
els and tools could extend their capabilities by accommodating
more dynamism and flexibility.

In this paper, we propose a new modeling framework that
views the PD process as a complex adaptive system. Rather
than prespecifying which activities will be done and when, we
set up: 1) general classes of activities with multiple modes that
vary in terms of inputs, duration, cost, and expected benefits; and
2) simple rules for activity interaction and combination. That is,
instead of dictating a specific project schedule a priori, we pro-
vide a “primordial soup” of activities and rules through which
the activities can self-organize and adapt to the changing state of
a project. This adaptive PD process (APDP) modeling frame-
work treats project control as a decision-making process, where
each decision aims to maximize the expected value of the overall
project in light of its current state and environment. In contrast
to conventional approaches that separate project planning and
control, we consider planning and control more holistically,
combining the recent ideas of search and selection (e.g., [68])
and exploration and exploitation (e.g., [5]) with the traditional
ones of coordination and transformation. By assuming from the
outset—during the initial project planning stage—that the pro-
cess will adapt, it is possible to improve project planning by
understanding the “design space” of potential paths to success
(rather than focusing only on a single one), orient the work-
force toward self-organization, and form the capability to cope
with many unanticipated situations—in effect, to be more agile
and flexible. Furthermore, instead of merely exploring artifi-
cial landscapes for purely theoretical insights, the APDP model
provides a decision support tool for actual projects.

This paper’s primary contribution is a new way to consider
and model a PD project’s process. We motivate and support
the new approach and model with theory, describe its formula-
tion, and begin to validate it with a real application. We devote
roughly equal space to each of these areas, organizing the pa-
per as follows. Section II discusses the theoretical background
motivating our approach, after which Section III introduces the
APDP modeling framework. Section IV applies the model in an
industry setting. Section V concludes the paper.

II. THEORETICAL BACKGROUND AND RESEARCH MOTIVATIONS

The APDP model is motivated by several theoretical bases,
including PD process modeling, product design cycles or itera-
tions, measuring product design performance and project value,
and project adaptation. In this section, we provide an overview
of the theory and distill pertinent motivations from each area.

A. Product Development Process Modeling

To enable the division of labor, the innovative, problem-
solving efforts in a PD project are decomposed into smaller,
interacting activities [119]. The interactions have also been re-
ferred to as dependencies, precedence relationships, interfaces,
work products, inputs, outputs, information flow, or interim

Fig. 1. Decomposing PD work into activities and deliverables to yield a pro-
cess architecture.

deliverables [18]. We adopt the last term. Product development
processes have been modeled with a number of frameworks,
including activity networks, Petri nets, etc.; see [16] for a re-
view. We refer to the network of activities and deliverables
as the process architecture (see Fig. 1).2 Alternative process
architectures—i.e., alternative sets of activities, deliverables,
and/or sequences of them—can vary in their performance [13],
often due to the number of assumptions required in certain activ-
ity sequences3 and the consequential iteration and rework when
those assumptions prove inadequate.

Product development projects, like projects in general, seek
to do something new, once, rather than repeat a known process
exactly [16]. A distinct challenge in modeling such a situation
is anticipating which activities and deliverables will actually be
needed. Process modeling can facilitate the description and ex-
ploration of the process space [22] (the set of feasible process
architectures) and foster the definition, sizing, and planning of
the activities and deliverables. It can provide a useful descrip-
tion of a PD system’s behavior that improves understanding,
which is a prerequisite to effective project planning and im-
provement [121]. In relatively well-understood projects, Austin
et al. [2] found that over 90% of design activities and deliv-
erables could be anticipated a priori. Even in the relatively
ambiguous conceptual design stage (the “fuzzy front end”) of
PD, Austin et al. [3] showed the efficacy of efforts to identify
activities and deliverables. Thus, even when projects are less
well understood, modeling can structure the act of sorting out
what is known and unknown [16] and prompt the discovery of
the “unknown unknowns” (“unk unks” for short in common in-
dustry parlance). It often turns out that many of the “unk unks”
that perturb projects were actually known to someone, but they
nevertheless surprise project management because there was no
way to get this knowledge into the project plans. Building a

2In terms of a physical product, the IEEE has defined architecture as “the
fundamental organization of a system embodied in its components, their rela-
tionships to each other, and to the environment, and the principles guiding its
design and evolution” [51]. The definition of a process architecture is analogous,
where the system is a process and the components are its constituent actions.

3When a deliverable is information only, an assumption can often act as its
surrogate. Many PD activities, therefore, actually have a variety of options for
when they will occur, depending on the assumptions developers are willing to
make.
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process model can help expose such latent information. Thus,
the best purpose of PD process modeling would not seem to
be to develop an infallible project plan, but rather to prompt
a fuller exploration of the project landscape and the potential
paths between the current state and the desired state(s)—to better
anticipate the roadblocks. (Former U.S. President and General
Eisenhower famously stated: “The plan is nothing. Planning
is everything.”) In contrast, in traditional project management,
process modeling has often focused on a single path (e.g., the
“critical path”).
Motivation 1: A key purpose of PD process modeling can be to
help a project manager understand the feasible “design space”
for his or her project, a set of process architectures called the
process space.

B. Iteration

Fundamentally, PD is a nonlinear, iterative process [57],
[95]. Any process of solving the complex problems interdict-
ing the production of a unique result will be fraught with
some amount of trial, discovery, and redirection. Many com-
mon models acknowledge this cyclical process: e.g., plan-do-
check-act (PDCA, the Shewhart–Deming cycle) [32], define-
measure-analyze-improve-control (DMAIC, the Six Sigma cy-
cle) (e.g., [44]), observe-orient-decide-act (Boyd’s OODA loop)
[8], design-build-test (e.g., [23]), and the experimentation cy-
cle [114]. Furthermore, in PD, many impending design failures
cannot be discovered immediately. This increased “rework dis-
covery time” and the consequential elongation of the feedback
loops in the process have a significant effect on project duration
and cost [26], [41]. While some design iterations are deliberate
(e.g., spiral development [7]), rework cycles usually are not.
Researchers have proposed various classification schemes for
iteration, including planned and unplanned iterations.4 We refer
to all cycles in the PD process as iterations.

In terms of the deliverables that relate activities, we compile
the following causes of iteration.

1) Poor activity sequencing: creating deliverables at the
wrong time (often too late), which forces other activities
to wait or make assumptions [67].

2) Missing activities: not creating all of the needed deliver-
ables.

3) Poor communication: not transmitting a deliverable
clearly, promptly, or appropriately.

4) Input changes: undermining the deliverables (or proxy as-
sumptions) used by activities to do their work and, in turn,
create further deliverables (e.g., requirements changes.

5) Mistakes: inadvertently creating defective deliverables.
In general, we note that

Motivation 2: Iteration occurs when the cumulative output de-
liverables of prior activities, plus the assumptions that can be
reasonably made at the time, are insufficient to enable subse-
quent activities to add appropriate value to the project.

Researchers have proposed a variety of models to explore
iteration in PD projects. System dynamics models (e.g., [41])

4See further categorizations in [118] and [25, Ch. 3].

have looked at the overall “work to be done,” some portion of
which will have to be redone. However, this aggregation can
prevent the identification and management of the specific ac-
tivities and deliverables with the greatest leverage in a process.
Hence, most PD process models involve networks of distinct ac-
tivities. Yet, conventional network models such as program eval-
uation and review technique (PERT) and critical path method
(CPM) assume a stable, acyclical network. Some network mod-
eling frameworks, such as the graphical evaluation and review
technique (GERT) (e.g., [76]) and the design structure matrix
(DSM) [11], account for iteration explicitly.

The DSM has been instrumental in a number of PD process
models, since one of its key strengths is highlighting iterative
loops. A DSM is a square matrix representation of a directed
graph (digraph), with the nodes (activities) represented by the
cells along the diagonal (e.g., Fig. 7). A mark in an off-diagonal
cell represents one or more deliverables flowing from one activ-
ity to another. One reads across a row of the matrix to see where
the activity in that row sends its outputs, and one reads down a
column to see from where the activity in that column receives
its inputs.5 For example, in Fig. 7, activity 1 may receive one
or more inputs from activity 7 and provide one or more outputs
to each of activities 3, 4, and 8. One can analyze a binary DSM
with the simple objective of minimizing feedback loops (i.e.,
seeking an order of the activities to upper-triangularize the ma-
trix), although a variety of objective functions can be used [73].
More realistic, numerical DSMs become more challenging, es-
pecially since the optimal process architecture may not be the
one with minimum feedback [13]. Recent DSM-based models
employ discrete event simulation and account for a number of
important PD process characteristics, including activity learn-
ing curves and the risks of second- and higher-order iterative
loops [13], [20]. However, all of these network models assume
that: 1) one can estimate all PD activities, dependencies, and
iteration probabilities a priori; and 2) iteration implies the rep-
etition of the same, previously completed activities.

In addition to the presence of iteration, its implications are
also challenging to model. An entire activity or set of activities
may not have to be redone, and a repeated activity may go faster
due to nonrecurring set-up time and/or learning. All of this may
vary based on the exact nature of the problem and the means
to its correction. For example, Thomke and Bell [113] showed
how experimentation strategies contribute to design iteration ef-
ficiency and effectiveness and found that both tended to increase
over successive cycles. Also, the cost of design iteration could
be relatively low for virtual prototypes and extremely high for
full-fidelity physical prototypes, while physical prototypes often
had to be built again for retesting (e.g., automotive crash tests),
computer models required only slight modification for a rerun
of the simulation. Most PD activities will produce results that
increase knowledge of the product recipe, and doing any activity
will expend resources, so the project state after any activity will
differ from the prior state. This new state may imply different

5Some DSM paper uses the opposite convention, showing feedback above
the diagonal, which is the transpose of the matrix. The two conventions convey
equivalent information.
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Fig. 2. Examples of the evolution of two TPMs.

project needs and actions rather than the exact repetition of the
activities deemed appropriate for prior needs.

Thus, in a real project, a particular iteration may not be a
foregone conclusion. The managerial decision about whether
or not to iterate depends on a comparison of the actual and
desired states of the project, in terms of time, cost, technical
performance, and risk. Most PD process models focus on time
and cost variables and resort to assumptions about the prob-
abilities and impacts of iterations. Because experts could tell
which activities had been the main triggers for iteration in prior
projects (e.g., design reviews and tests), and because sometimes
they could estimate statistical probabilities for rework, proba-
bilistic iteration modeling became a popular technique (used by
all of the aforementioned models). Such probabilities have to
be inferred a priori based on typical situations, but they do not
address the entire range of potential managerial options.
Motivation 3: Iteration is a managerial control option and it
will be exercised when it provides the path of greatest added
value to a project.

C. A Product Design’s Technical Performance
and a PD Project’s Value

The desired outcome of a PD project is a “recipe” for a suc-
cessful new product [91]—i.e., a product design including a list
of ingredients (bill of materials) and instructions for their ac-
quisition (supply chain), preparation (production process), sup-
port (customer service), and even disposal. Perhaps the most
important aspect of the recipe is confidence in its ability to sat-
isfy project stakeholders, who desire certain levels of product
performance (which includes a product’s features, functions,
aesthetics, reliability, producibility, cost, etc.). Hence, much of
the development effort is spent on experimentation to confirm
hypotheses about the product design [114]. The value added
by such experimentation comes in the form of information that
increases confidence and decreases uncertainty and risk [12].
However, the actual performance level of an evolving prod-
uct recipe can be difficult to verify immediately, and prior PD
process models have not accounted for it [18]. Meanwhile, two

nonprocess models by Paquin et al. [81] and Browning et al. [12]
capture the typical influences of individual activities on project-
level requirements and use these maps to anticipate the likeli-
hood that a set of activities will lead to desired design perfor-
mance levels. These models draw upon the convention in the
marketing literature to treat a product as a vector of attributes
important to customers (e.g., [38], [61], [94]). One can measure
each attribute using one or more technical performance mea-
sures (TPMs) [85]. Thus, one can specify the technical goals of
a PD project in terms of the attributes that matter to its stake-
holders, with at least one TPM per attribute [12].
Motivation 4: Product performance can be represented as a
vector of attributes, each measured by one or more TPMs, which
collectively define the technical performance level of a project,
which can be seen as one aspect of its overall value.

To account for uncertainty in a product recipe’s technical
capabilities, Browning et al. [12] used TPMs represented by
random variables with a probability density function (PDF) or
distribution. For example, the left side of Fig. 2 shows two tri-
angle PDFs that represent a “larger is better” (LIB) TPM at two
project states, n and n+1, before and after a set of activities.
Here, the information produced by the activities serves to im-
prove all three estimates (worst, most likely [mode], and best)
of the TPM, thereby shifting its triangle PDF to the right. The
right side of Fig. 2 exhibits the evolution of a TPM through
successive states. Due to high technical uncertainty at the be-
ginning of the project, the TPM initially has a high variance
in potential outcomes, and the most likely outcome falls well
below the target. Yet, in this example, the information created
by the project’s activities improves the outcome distribution rel-
ative to the target and also shows increased confidence through
the reduction in the variance and range of the TPM.

A product recipe’s level of technical performance is one as-
pect of a PD project’s value. TPM profiles can capture the evolv-
ing technical performance levels. The resources (such as time
and money) used to attain these technical performance levels is
another aspect of project value. The amount of time and money
required by a project can be similarly represented by outcome
distributions, and these also tend to narrow over the course of
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a project [13]. For cost, duration, and technical attributes of a
project, a project manager can weight each potential outcome by
its probability and consequence—e.g., in terms of its effect on
expected sales revenue—and, thereby, calculate a project’s ex-
pected value and value at risk, thus translating the consequences
of these strengths and weaknesses into monetary terms to sup-
port decision-making [15]. From this point of view, project value
increases as the portion of that value which is at risk decreases.
The value of a project at any state (start, interim, or end) is a
function of the current performance of the product recipe (in-
cluding the risks to that), the time and money spent, and the
time and money deemed necessary to get the product recipe
to the point of achieving the targets with sufficient confidence
(indicated by a sufficiently low amount of technical value at
risk). During project execution, a set of performance measures
can represent the project’s state relative to its goals, and thus its
current value. Mapping the expected effects of individual PD
activities on particular TPMs provides the connection between
product success and project planning and control.
Motivation 5: The execution of activities: 1) uses resources;
2) creates deliverables that can revise TPMs; and 3) thereby
adjusts the state (and value) of a project.

D. Project Process Adaptation

In this paper, we view the process of accomplishing a PD
project as a kind of complex adaptive system (CAS). A CAS
is a system composed of independent but connected agents
that collectively adapt and self-organize, causing the overall
behavior of the system to emerge over time [49]. For exam-
ple, the cars on a highway interact to cause traffic patterns,
and competing firms cause business patterns. Researchers have
used CAS theory to explore many managerial topics includ-
ing supply chain management [21], [65], [82], organization
change [33], [72], [87], [101], [111], invention [39], innova-
tion [9], [19], [52], strategy [65], [107], and PD projects [70].
While CAS theory has had a strong influence on organization
science, so far it has been explored much less in the context
of project processes. Here, we consider activities as the agents,
deliverables as their connections, simple rules for activity selec-
tion and deliverable flow as the basis for self-organization and
adaptation, the emergence of a process path, and its implica-
tions for project fitness or value. Project state and process value
thus coevolve over the course of traversing the project territory
or landscape, which can be dynamic and rugged.

Several researchers have modeled aspects of PD process adap-
tation, both at the strategic and tactical levels. At the macro
level—using generic, undifferentiated activities—Pich et al.
[84] characterized a project’s process in terms of its information
structure (knowledge about the state of the project and the world)
and contingency plans, which managers can compare in order
to dynamically redetermine appropriate actions. Huchzermeier
and Loch [50] measured flexibility in terms of managerial op-
tions to delay, abandon, contract, expand, switch, or improve a
project. Sommer and Loch [105] mentioned the combined chal-
lenge of unforeseeable uncertainty (the inability to recognize
influence variables and their relationships) and high complexity

(a large number of variables and interactions) and noted two
approaches in this context: trial and error learning (continued,
flexible adjustment of considered actions and targets) and selec-
tionism (pursuing several, independent approaches and choos-
ing the best one ex post). While these macro models provide
strategic advice, they provide less tactical advice to project con-
trollers. These studies also used artificial project landscapes.

At a level of differentiated activities, but for general business
processes, several researchers (e.g., [55], [90], [92], [93]) have
investigated and developed frameworks for managing adaptive
workflow systems. However, these systems tend to treat ex-
ceptions or deviations from plans as opportunities for correc-
tion rather than desirable process behaviors, and they do not
lend themselves as well to the dynamic, iterative nature of PD
processes.

At the micro level of individual designers who must collab-
orate, Danesh and Jin [28] used an agent-based model of an
ongoing set of decisions about which activities to do, coordi-
nated to convergence through common policies. For engineering
design projects, the signposting method [24], [78], [125] dynam-
ically selects activities during process execution based on the
confidence level of a potential activity’s inputs. Policies based
on the state of the information inputs and the capabilities of the
activities govern activity selection and timing. A pre-evaluation
selects the appropriate version of an activity and a postevalua-
tion step determines if iteration is needed. Recently, a similar
approach has been proposed by Karniel and Reich [54]. Simi-
larly, Chung et al. [22] advocated a “grammatical approach”6 to
process specification and defined a process space of all possible
activities and their arrangements. Indeed, the analogy of process
to grammar and language seems powerful: building emergent
processes from standard activities mirrors the way people can
write a variety of creative literature using a commonly accepted
language [102]. The standardization actually enables the cre-
ativity. Finally, Pall [80] used a “network of commitments”
framework to design adaptable processes, where a key is to pre-
define acceptable ranges of interactions (instead of only point
values) so that robust commitments can be made.7 We assimilate
these insights as follows:
Motivation 6: A PD process may be modeled as a CAS, where
activities are agents, deliverables imply their connections, and
a process path emerges from the exercise of simple rules for
activity selection and deliverable flow. The fitness of (value
provided by) this process will depend on the dynamic state of
the project (duration, cost, and technical performance) and its
environment (represented by project goals).

An adaptive process is amenable to alteration in the event
of either a change in the goal or a rejection of the hypothe-
sized (planned) path to achieving the goal. These changes may

6“As the grammar for a language describes all possible sentences, a process
grammar describes all possible arrangements of tasks in a design process. Rather
than focusing on a particular process, a grammatical approach draws attention
to the set of alternatives” [22]. For further background on process grammars,
see [83].

7This process engineering concept is related to the product engineering con-
cept of set-based design [104]. Robustness is similarly relates to the concept of
sensitivity in activity overlapping [60] in that a robust process is insensitive to
perturbations.
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involve new activities (to produce new deliverables), different
versions of old activities (to produce different deliverables), iter-
ation of old activities (to improve the maturity of deliverables),
or elimination of old activities (because certain deliverables are
not needed). These changes are facilitated and accelerated when
potential and likely adjustments to the activity and deliverable
sets have been anticipated—i.e., when potential “new” activi-
ties and deliverables have already received some consideration.
It also helps to discern the potential process patterns that may
emerge from the planned actions and interactions. Duimering
et al. [36] argued that one can understand the changes to PD ac-
tivities caused by ambiguity in terms of a finite set of predictable
and potentially manageable patterns. This understanding and
anticipation comes from additional investments in project plan-
ning, which involves systematic learning about the territory
ahead—what is known and unknown, what is certain and uncer-
tain [29], [30]. When one drives across a major city, for instance,
it is highly useful to have not only a planned route, but also fore-
knowledge of the best alternative routes should an unexpected
roadblock arise. Also, when composing a piece of creative writ-
ing, it helps immensely to possess fluency in the language used:
instead of having just one way to express an idea, a gifted writer
can select from many options to convey just the right nuance.
Similarly, project managers can invest in better understanding
of the project landscape. Often this is called “planning,” but
it is not just determining a supposedly optimal process archi-
tecture (what Eisenhower would have called “the plan”). Plan-
ning provides the basis for quick adaptability and agile project
control. In other words, while some equate agility and adapt-
ability with a lack of process structure, somewhat the opposite
seems appropriate: process structure gives project participants
a framework for quick analysis of what is likely to solve a pop-
up problem, whereas a completely unstructured environment
forces project participants to spend a lot of effort simply find-
ing the information with which to make a decision [17]. Spear
and Bowen [106] described how the Toyota Production System,
paradoxically, was both rigidly specified and highly adaptable.
However, enhanced adaptability has costs, largely reflected in a
project’s investment in planning and learning about the territory
ahead.8 Thus, we propose that
Motivation 7: Adaptability in PD projects is facilitated by ad-
vance knowledge of the potential activities and their relation-
ships (planning) and their rules for combination (work policy),
because this enables the activities to be quickly and effectively
re-evaluated and reorganized over the course of a project.

According to Meredith and Mantel [74], the fundamental ob-
jectives of project control are (1) the regulation of results by
altering alternatives and (2) the stewardship of organizational
assets. Hence, project control requires continuously updated
project information and decision alternatives [1]. To exercise
adept control, managers require extensive information-sensing
and -filtering systems. To support rapid decision-making, project

8Of course, it is possible for a project to invest too much in adaptability, if
the need to utilize that capability is unlikely. So, the question of how much to
invest in planning remains an important one for further research. The appropriate
combination of planning and “doing” also relates to balancing exploration and
exploitation (e.g., [5]).

managers benefit from having alternative courses of action
conceived and analyzed. The most mainstream project con-
trol model, the earned value management system (EVMS)
(e.g., [40], [86]), compares the planned and actual cost and
schedule status of a project. An EVMS can be a helpful man-
agerial tool, but it has at least four key shortcomings: (1) it takes
a linear view of a process (ignoring iterations), (2) it does not
account for a product’s technical performance or quality, (3) it
assumes a pre-specified set of activities will lead to project suc-
cess, and (4) it does not close the control loop—i.e., it cannot
recommend helpful courses of action contingent upon various
project states.
Motivation 8: Systematic project control entails: 1) the synchro-
nization of internal and external data regarding the state of the
project; and 2) the use of those data in making decisions on
project changes.

III. MODEL CONSTRUCTS AND SIMULATION METHODOLOGY

Our proposed APDP modeling framework stems from the
preceding theoretical motivations. In this section, we describe
the model’s formulation and simulation.

A. Project State

We model a project’s evolution through a series of states.
Several variables characterize each state: cumulative time, cu-
mulative cost, remaining time, remaining budget, and technical
performance risk. While others have modeled projects as a pro-
gression through a series of states (e.g., using Petri nets), the
APDP model is the first to do so in terms of the broad set of
variables that encompasses cost, schedule, quality, and risk. In
the basic model, we assume a project’s goals are given: a dead-
line, a budget, and a set of technical performance targets. We
also presume a single-attribute utility function for each goal.
The utility (market response) functions indicate the expected
change in project value (e.g., in terms of expected unit sales
or revenue) for any change in cost, duration, or technical per-
formance levels. Using the approach that Browning [14], [15]
outlined, we use these inputs to calculate the expected value of
a project and (as described in Section II-C) the risks of failing to
provide this value given the current distributions of the project’s
state variables.

For example, consider a simple PD project with the following
goals: a budget of $30 000; a duration of three months; and only
one technical performance attribute, mass, for which the target
is 3.2 g or less. If these goals are met, the project is expected
to be worth, say, $100 000, whereas a product with a greater
mass, and/or a project with a cost or schedule overrun, may
reduce that value according to the pertinent utility function(s).
At some interim state, suppose that the project is on schedule,
within budget, and has technical performance estimates (for
mass) of, in the best case, 3.0 g; most likely case, 3.5 g; and
worst case, 3.9 g. Using these three estimates as the basis for the
outcome distribution (in the form of a triangle PDF) normalized
to unity, we weight the large percentage of outcomes that fail
to achieve the target by their impact (in terms of lost project
value) to arrive at an estimate of the project’s “value at risk.”
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Fig. 3. Activity mode objects and attributes.

Suppose that the utility function is fairly flat until 3.7 g (such
that outcomes in the 3.2–3.7 g range do not have much negative
impact) but then increases rapidly above that point, so that the
current estimates of the outcome distribution place, say, $40 000
of the project’s value at risk (thus giving it an expected net value
of $60 000). (For fuller details of the calculations, see [15].)
Hence, at this point in the project, cost and schedule look fine,
while technical performance is problematic, and the value at
risk is $40 000. In this state, appropriate project control actions
call for an increased focus on technical performance and the
activities (such as design changes, investigations of alternative
materials, iterations of strength and stress analyses, etc.) with
such an emphasis.

Next, suppose at some later state of the project, it is 5 days
behind schedule, with a cost of delay (a linear utility func-
tion) of $2000/day; it is $5000 over budget; and mass esti-
mates are 2.9 g (best), 3.1 g (most likely), and 3.4 g (worst).
In this state, suppose the project’s value at risk is (5 days)
($2,000/day) + $5000 + $5000 = $20 000, where the last
$5000 is due to the technical risk from the (now lesser pro-
portion of) outcomes that exceed the 3.2 g target. In this state,
project control calls for an increased emphasis on speed and
efficiency.

Thus, we model each project state as a function of time,
cost, technical performance, the goals for each of these, and
stakeholder utilities. We can combine these to arrive at a scalar
for project value at each state, although we will instead use the
converse, the expected amount of that value at risk, represented
by the risk index R. This allows us to measure project progress
in terms of a single index of added value (or risk reduction,
∆R). If the utilities are expressed in monetary terms, then R
is also in monetary units, which is most intuitive. Even if R is
in nonmonetary terms, it can still be useful to note its relative
change, positive or negative, from one state to the next. It can
also be helpful to normalize R over the continuous range [0,1],
where zero indicates that none of the project’s value is at risk and
one indicates that all of it is (smaller numbers are better). This
way, project managers can categorize R into selected ranges of
low, moderate, and high risk, such as [0, 0.2), [0.2, 0.5), and
[0.5, 1], respectively.

Here we use normalized risk indices for cost (C), duration or
schedule (S), and technical performance (T) risks and combine
them via a simple weighting into an overall project risk index R

R = wS RS + wC RC + wT RT (1)

where wS ,wC , and wT are the weights, which sum to one. These
weights represent the relative importance of the project’s goals.
Of course, more sophisticated functions could be used in lieu of
(1); each has advantages and disadvantages. Here we adopt the
weighted average primarily for its simplicity.9 Each individual
risk factor, Rϕ , is evaluated as

Rϕ = κϕ

∫ Gϕ

−∞
P̃ϕ (x) [Uϕ (Gϕ ) − Uϕ (x)]dx (2)

where ϕ ∈ {C, S, or any of the TPMs comprising T}; x is an
outcome; P̃ϕ (x) is the PDF; Gϕ is the goal or requirement;
Uϕ (·) is the utility function; Uϕ (Gϕ ) − Uϕ (x) is the impact (in
terms of lost utility) of an outcome that fails to meet the goal;
and κϕ is a normalization constant [12]. The overall project
value is highest when the portion of the project’s value at risk is
minimal—i.e., when R = 0.

B. Activity Modes

Project state transitions, which we will discuss further in
Section III-E, are affected by the accomplishment of activities.
To model discrete activities, we adopt an object-oriented frame-
work [16] based on classical input-process-output diagrams
(e.g., [110]) and the information processing view of project
activities (e.g., [42], [115]). Fig. 3 provides an overview of the
activity mode objects and their attributes, which are defined in
the followings.10 Before going further, we note that the APDP
model is independent of the approach to its representation and

9For a discussion of alternative approaches (see [10, Ch. 7]). It is important
to note that one common disadvantage of the weighted average—the possibility
of very poor performance in a low-weighted area being obscured by good
performance in a high-weighted area—can be overcome by nonlinear utility
functions that place a large penalty on poor performance and marginal returns
on great performance.

10The state variables x and y, the input and output attributes, and the functions
shown in Fig. 3 are stylized for example purposes only. The full explanations
of these items follow in Section III-B.
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simulation. We could construct this type of model using any
of several potential frameworks, including IDEF0, Petri nets,
GERT, DSM, etc. A model such as this has not previously been
built using any of these frameworks, although it could have
been. We adopt the DSM as a representation technique because
of its conciseness, but the APDP model is not DSM-dependent.

An activity mode is a version of an activity, a particular way
of getting a desired output. Each mode has a similar purpose, in
general, but different characteristics. For example, there may be
several ways to conduct a product test: evaluating a simulation
model, testing a quickly fabricated prototype, or testing an actual
piece of hardware. Each of these alternatives, or activity modes,
may have different inputs, entry criteria, costs, durations, and
benefits. Hence, an activity’s mode of execution influences all
of its other attributes. An activity can also have one or more
specific iteration or rework modes, which may vary depending
on the type of input change that triggered the rework. Varying an
activity’s mode provides a more intricate means of evaluating
possibilities for crashing (faster execution at varied expense)
and the use of alternative technologies. The activity mode is a
kind of agent and is the atomic building block of the APDP
model.

Entry criteria (EC) indicate the minimally acceptable level
of technical performance or the maturity required of the inputs
in order to perform the activity mode.11 Executing an activity
without satisfying its EC would compromise its effectiveness.
Thus, the APDP model currently prohibits the execution of
activities whose EC are unsatisfied unless no other option is
available. For example, the EC for a test activity might be the
number of lines of code implemented in software, the expected
level of performance of an aircraft propulsion system, or the
precision with which the aerodynamic drag of an aircraft can
be qualified.12 EC are specified during the calibration of an ac-
tivity mode for a certain purpose in a project by considering
historical data and expected results. The EC act as “mini toll
gates” and enforce a nominal degree of precedence constraint
on a process. Here, they provide one of the “simple rules” of ac-
tivity interaction and self-organization in the adaptive process.
Note that the use of EC allows activity overlapping. Krishnan
et al. [60] argued that not all kinds of information can be ex-
changed in a preliminary form, so they recommend the iden-
tification of adequate information types and the definition of
packages of information with increasing maturity. Here, over-
lapping occurs by breaking down activities into smaller seg-
ments with varied EC. The use of appropriate EC can also mit-
igate undesired iterative design oscillations (“design churn”—
e.g., [71], [75], [126]).

Availability (a) is a Boolean value, “TRUE” if the project can
perform the activity mode given the project’s current state (i.e.,
if the activity’s EC are satisfied) and “FALSE” otherwise.

Cost (c) and duration (d) are random variables, each with
a distribution of possible outcomes. In the absence of further

11EC are similar to the parameter confidence levels required to perform an
activity in the signposting approach [24], [78].

12Process models of this type may also include exit criteria, which are implicit
in our model since we assume they can be met given enough internal iterations
of the activity.

information, we use three estimates (optimistic, most likely,
and pessimistic) to generate a triangle PDF of potential c and d
outcomes, as discussed in [13].

Fidelity (f) represents the TPMs expected to be influenced
by the results of the activity mode and the degree to which
this influence occurs. For example, a high-fidelity activity mode
might entail producing a detailed model or prototype that should
yield a great deal of information in a number of areas about the
hypothesized product design, whereas a low-fidelity activity
mode might produce quick but approximate feedback on the
feasibility of just one aspect of a design [114, p. 101]. Thus,
the fidelity attribute records a list of the TPMs typically affected
directly by the activity, the type of effect on each, and the typical
magnitude of the effect in general terms (“high,” “medium,” or
“low”) in each case. As described in Section II-C, an activity
may affect a TPM distribution by (1) shifting the most likely
value and/or (2) shifting the best and worst values. Since each
effect can be positive, negative, or unknown in its direction of
change, this yields nine possible types of effects, which may
be envisioned as a 3 × 3 table, where the rows represent the
improvement, unknown change, or worsening of the most likely
value and the columns represent the reduction, unknown change,
or growth in the uncertainty bounds [12].

Effectiveness (e) is a dynamic attribute that depends on the
state of a project. An activity that could be highly effective at one
point in a project may be less beneficial at another point. Effec-
tiveness is determined by using the fixed information regarding
fidelity and calculating an expected benefit of the activity, given
the project’s current TPM distributions. Thus, an activity mode
that provides a great amount of uncertainty reduction for a par-
ticular TPM will be more effective when the uncertainty in that
TPM is high and less effective otherwise. For example, a prod-
uct design simulation may be much more valuable early in a
PD project and much less later on when hardware tests become
more beneficial. For another example, many companies have
standard procedures to correct typical design failures, including
activity modes with a special focus on failure correction. The
value of such activity modes or procedures is usually low, until
the special kind of failure is detected. If the failure is found, then
this activity mode becomes highly beneficial because it was de-
veloped specifically for the situation. In our current model, we
determine e as the expected reduction in overall technical risk,
which is a function of J TPMs (i.e., it does not include cost or
schedule)

e = E[RT ] =
J∑

ϕ=1

wϕ (∆Rϕ ) (3)

where E[RT ] is the expected overall technical risk reduction
provided by the activity, ∆Rϕ is the expected risk reduction
in TPMϕ after executing the activity mode, wϕ is the relative
importance of TPMϕ , and the weights again sum to one. ∆Rϕ

will be zero for most ϕ for a particular activity mode, as most
activity modes will only affect one or a few TPMs directly.

The expected value (E[v]) of an activity mode balances its
benefits (e) with its costs (c and d) and is calculated using a
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Fig. 4. Example of generating an initial superset of activity modes.

form of (1):

E[v] = wS (∆RS ) + wC (∆RC ) + wT (∆RT ) (4)

where ∆Rϕ is the expected risk reduction provided by the activ-
ity mode, given its resulting c, d, and e. While an activity mode
will almost always provide some positive expected benefit (e),
this will vary depending on the project state, and it will often be
offset by the concomitant increase in project cost and schedule
risk (∆RC < 0 and/or ∆RS < 0) caused by c and d. Thus, v
can be positive or negative. It is important to emphasize that v
is a random variable prior to the actual execution of the activity
mode, at which point actual amounts for c, d, e—and, therefore,
v—become known. A decision about whether or not to attempt
an activity mode must depend on E[v] since the actual v is as
yet unknown.

C. Establishing the Initial Superset of Activity Modes

Fig. 4 exemplifies the generation of an initial superset of
activity modes. The left-hand side of Fig. 4 depicts a work
breakdown structure (WBS) with the various activity modes
represented as layers. The right-hand side of the figure shows
the relationships between the modes of three of the activities,
where the additional subscripts “a,” “b,” and “c” signify the
activity modes: “a” is the conventional activity mode, while “b”
and “c” are rework modes with special purposes, typically to be
conducted only if the deliverables from the “a” mode are found
to be inadequate upon subsequent design review.

While some classes of product development projects are so
novel that it seems impossible to nominate even a superset of
potential activities, the initial activity superset should include
all of the plausible activities that the planners can anticipate.
As they discover additional activities, they can add these to the
mix. However, as noted in Section II-A, most projects will be
able to anticipate a majority of the activities they might have to
do. Thus, while assuming some prior knowledge of a project’s
potential activities, the APDP model considerably relaxes the
presumptions of knowledge about the content and form of a
project’s network vis-à-vis conventional methods for project
planning and scheduling. Nevertheless, the planning effort re-
quired to define the initial superset of activity modes is likely
to be somewhat greater than that required to define any single
project plan (that contains a smaller set of activities).

D. Simulating the Model

We explore the APDP model with a discrete-event simula-
tion that transverses project states. Simulating project execution
entails selecting activity modes according to simple rules—i.e.,
policies for choosing among alternative state transitions. At each
state, the simulation determines the feasible next steps (the ac-
tivity modes with satisfied EC) and the expected value of each.
These activity modes may reside in one or more independent
decision sets. (The independent decision sets allow for the con-
current execution of independent activities.) In each decision
set, the activity mode with the highest expected value is se-
lected, after which its actual attributes are sampled via Monte
Carlo techniques. When the shortest-duration activity mode fin-
ishes (of all of the activity modes working concurrently), then
that activity mode’s duration and benefits, and all concurrent
activity modes’ expended costs, are accounted for to determine
the project’s new state. Run thousands of times, the simulation
enumerates a variety of potential paths through the project and
the properties of each, thereby illuminating the process space.
We discuss these steps further in the following subsections.

E. State Transition Decisions

The path from the beginning to the end of a project consists of
a set of states, punctuated by activity modes. The states attained
will vary depending on the activity modes chosen. Selecting an
activity mode is a three-step procedure. First, the eligible activ-
ity modes are determined by comparing their EC to the current
project state.13 Second, the eligible activity modes are sorted
into independent decision sets. Each decision set represents the
set of options available on a particular process thread. Third,
the activity mode with the highest expected value is chosen
from each decision set. This approach follows the decision-
based design perspective [45], [116] in PD and uses the insight
from agent-based systems that dynamic, weighted relationships
(edges) permit a network to exhibit and encode learned knowl-
edge and adaptive states [58].

Fig. 5 demonstrates the decision framework for state tran-
sition and project adaptation. Suppose that at a given project
state, there is one decision set consisting of three eligible activ-
ity modes: A2, B1, and B2. Each has a distribution of potential

13The model accounts for activity mode “self-iteration” by including its
effects within the stochastic activity attributes. Also, the basic model assumes
resource availability, but a step could be added to disqualify activities for which
adequate resources are not available. We save exploration of the effects of
resource constraints for future research.
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Fig. 5. Example of the decision framework for state transition under
uncertainty.

outcomes for v (shown stylistically in the figure as a triangle dis-
tribution emanating from each chance node) and thus an E[v].
A2 is selected because E[vA2] > E[vB1] > E[vB2]. However,
when the actual vA2 , A[vA2], is sampled, it is, of course, possible
for it to be less than this expectation—i.e., A[vA2] < E[vB1] is
a possibility. Thus, a good decision could have a bad outcome,
and a bad decision might have had a good outcome. The basic
model assumes a rational, risk-neutral decision maker. The state
transition decisions allow for a contingent model of iteration and
rework, where activities will tend to be iterated when weighted
technical risk is greater than weighted cost and schedule risk—
i.e., when wT RT > wS RS > wC RC in (1). (If the EC of none
of the downstream activity modes are satisfied, then iterative
rework is the only way to continue the project.) In the basic
model, a simulation run ends when a nominal subset of activ-
ity modes has been completed and either technical performance
risk is “low” (e.g., below 0.2) or cost or schedule risk is “too
high” (e.g., above 0.5), although other suitable stopping criteria
could be adopted.

F. Stylized Example

We now demonstrate the APDP simulation logic on a simple
project with two TPMs and a superset of eight activity modes. In
its main rows, Fig. 6 shows three project states along an emerg-
ing process path. Each row pertains to a particular process state
transition, and each row begins with a DSM representation of
the process (as described in Section II-B). For example, the
DSM in the upper-left corner shows potential outputs from the
activity mode “design 1.1” flowing to either activity mode “de-
sign 2.1” or “design 2.2.” The DSMs in Fig. 6 use the following
notation. On the diagonal, checks (�) denote completed ac-
tivity modes; question marks (?) show potential next activity
modes; filled black cells indicate unavailable activity modes;
stars (�) represent chosen activity modes; and “X”s mark unse-
lected activity modes. Off the diagonal, solid circles (•) depict
active relations, empty circles (◦) inactive relations (paths not
chosen), and solid diamonds (�) yet-to-be-determined, contin-
gent relations. The activity superset in this example includes
both “broad scope” activity modes (with x.1 numbering, such

as “design 1.1”), which can be considered as general design and
test activities, and rework modes (with x.2 or greater number-
ing) focused on correcting specific failures. Rework modes tend
to have lower fidelity, cost, and duration due to their reduced
scopes. Furthermore, since they are special activities to correct
failures, the EC for rework modes are more stringent: a certain
level of technical performance is required in order to perform
them. (Otherwise, iteration can occur by reworking the primary
mode.)

In the first row of Fig. 6, activity mode 1 (“design 1.1”) has
just finished, as indicated by the � in the upper-left cell of the
left DSM. Reading across row 1 in this DSM shows a flow
from activity 1 to either activity 4 or 5 (as indicated by the
�s). Hence, activities 4 and 5 (“design 2.1” and “design 2.2,”
respectively) are marked with “?”. The next items in the first
row of Fig. 6 depict the decision variables used to determine
which activity will be chosen as the next step in the emergent
process. To the immediate right of the DSM, the current level of
design performance, estimated using the expected value of each
TPM distribution, is shown to satisfy the EC for continuing
on to “design 2.1” but not the more stringent EC for “design
2.2.” Therefore, activity 4 is, in fact, eligible while activity 5
is not. The next diagram compares the current Rϕ values for
each TPM along with RC and RS . Next, the “Activity Values”
diagram shows E[vdesign 2.1 ] and that the EC for “design 2.2”
have not been met. Thus, “design 2.1” is the only choice, and
the far-right DSM shows the contingent flows (from activity 1
to activities 4 and 5 in the left DSM) now replaced by an active
flow from activity 1 to activity 4 (the •) and an inactive flow
from activity 1 to activity 5 (the ◦). Furthermore, activity 4 is
now marked with a “�” and activity 5 with an “X”.

In the second row of Fig. 6, “design 2.1” has now completed,
and the next options are tests 3.1 or 3.2. Again, the EC are
satisfied only for the first of these two activity modes, so activity
6 is chosen. In the third row, “test 3.1” is finished and a choice
must be made to continue on to “design 4.1” or to iterate one or
more of the previous activity modes. (Activities 1 and 4, while
done previously, now re-enter into consideration.) The EC are
satisfied for all of these options, but the highest expected value
comes from activity 3 (“design 1.3”), signaling that the first pass
through these activities did not provide adequate risk reduction
in the TPMs. In fact, TPM2 remains at high risk, and design
1.3 is a rework mode targeted mainly at this TPM. While not
shown with additional rows in Fig. 6, note that the next step in
the process will be to do activity 5 and then either activity 6 or
7, as one can see by tracing the potential flow paths in the final
DSM. Iterations will continue until technical risk is reduced to
an acceptable level, or until the resource expenditures make the
cost and schedule risk more problematic.

IV. MODEL APPLICATION, RESULTS, AND MANAGERIAL

INSIGHTS

While the APDP model has strong face validity from its firm
theoretical grounding, it is important to increase its validity fur-
ther through application to an industrial project. In this section,
we report on such an application, present some of the results, and
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Fig. 6. Three example states in an APDP simulation.

discuss some of their insights for managers. Since our primary
goal in this initial application was to validate the feasibility of
the model, we started with a fairly high level, sequential project
representation and a single TPM.

A. Project Description and Model Inputs

TetraPak Carton Ambient (TPCA), a business unit of
TetraPak, is the world leader in the development and production
of packaging systems for liquid food products that can be stored
at room temperature. TPCA operates in six countries with 2100
employees, with major PD and production facilities in Modena,
Italy, and Lund, Sweden. We applied the model to a project at
TPCA S.p.A. in Modena that dealt with designing a new pro-
duction process in which semi-manufactured goods would feed
into a generic transformation process that released a finished
product. The project’s main objectives were to evaluate the cor-
related effects of raw materials, the transformation process, and
the normal variation in the noises (i.e., variability in product
and process characteristics) versus defects in appearance, the
nominal geometric dimensions, and the nominal tare weight of
the container. The overall goal was to design and develop a ro-
bust and stable process by reducing variability in the parameter
values and thereby increase confidence in the characteristics of
the final product.

To build the initial model, the project leader provided alterna-
tive plans and strategies for various project scenarios. We used
these to define an initial superset of activity modes across four
project phases, as shown in Fig. 7. This superset included all of
the feasible activity options identified and a rework mode for
each. As for TPMs, TPCA wanted to focus initially on a sin-
gle, major characteristic of the end product—the tare weight of
the liquid food container. Extremely high production volumes
make tare weight a key cost driver in the food packaging indus-
try. Hence, potential variability in this parameter was the major
source of technical risk in the project. Other important TPMs
included appearance defects and geometrical dimensions, but
we base our initial results only on the tare weight TPM. Similar
historical projects and worker experiences provided the basis
for the data concerning the typical, direct effects of the activity
modes on this TPM. According to the test experts interviewed,
the dispersion of outcomes defined by the coefficient of variation
is 10–15% in real life experiments and 5% in laboratory tests.
Therefore, we use these values as upper bounds on the effective-
ness of an activity mode on a TPM; the lower bound is zero (no
effect). For simulation purposes, the “actual” effectiveness of
an executed activity mode is randomly sampled from a uniform
distribution across this range. For the weights in (1), TPCA used
wC = 0.25, wS = 0.25, and wT = 0.5 at the beginning of the
project and thereafter allowed the weights to vary dynamically,
as follows. If an attribute had “high” risk (i.e., Rϕ ≥ 0.5), it
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Fig. 7. DSM showing the activity mode superset and the potential, deliverable flow paths for the TPCA project.

received a preliminary weight of 3; 0.2 ≤ Rϕ < .05 implied a
preliminary weight of 2; and Rϕ ≥ 0.2 implied a preliminary
weight of 1. These preliminary weights were then normalized
to determine wC ,wS , and wT .

Fig. 8 shows the names of the four project phases and some
characteristic results from a single simulation run. For each
of four interim states of the project (after each of the four
phases), a PDF represents the relative likelihood of the TPM
outcomes. The vertical lines with each PDF show the target
at the end of each phase. TPCA changed the target for each
phase by continually lowering it (i.e., making it more difficult
to achieve). The region of each PDF to the right of the target
represents the outcomes that fail to achieve the performance
objective. The consequence of each of these unsatisfactory out-
comes is weighted by its impact (an inverse utility function)
to determine RT , as in (3). Note that TPCA also changed the
utility functions for each phase to reflect the dynamic project
environment.

We evaluated cost risk using the two time-invariant func-
tions depicted in Fig. 9. We used these functions to translate
the difference between planned and actual cost at each point
during the project to a probability and an impact of an even-
tual cost overrun, respectively. In the example given in Fig. 9
example, the actual cost is higher than expected at a point in
the project, and we take this difference to imply a 60% chance
that the budget will ultimately overrun, but we deem such an
outcome to have a fairly low impact (0.12) on the project’s
value. We multiplied these probability and impact numbers to
get an estimate of RC , where RC ∈ [0, 1]. We used a similar
approach to evaluate RS . Of course, we could have used a more
sophisticated approach to estimating RC and RS , but, work-

ing with TPCA, we deemed this approach sufficient for this
project.

Based on these inputs to (1), TPCA’s PD project had an initial
risk index of 0.21, where R ∈ [0, 1], meaning that about 21%
of the project’s value was at risk. TPCA sought to accomplish
a project that would serve to reduce this risk and thus increase
value.

B. Results and Managerial Insights

Many PD process models reported in the literature do not ex-
plicitly note verification or validation efforts. Nevertheless, as
recommended by Sargent [98], we used several verification and
validation techniques during the model and simulation’s devel-
opment and application. Conceptual model validity hinged on
acceptance of the theoretical motivations described in Section II
and the basic constructs described in Section III. Computer-
ized model verification focused on ensuring the correctness of
the programming and implementation of the conceptual model.
Operational and data validation occurred through review by
managers and project experts at TPCA, who also confirmed the
plausibility of the results vis-à-vis company models and his-
torical experiences. We settled on analyzing a batch of 4000
simulation runs, because additional runs did not make a sig-
nificant difference in the results. We also used event, face, and
internal validation techniques, as described by Sargent [98]. For
example, we ran two batches of 4000 runs each and compared
them to ensure internal validity and consistency. The model and
simulation also met the validation critieria outlined by John-
son [53]. Overall, the validity of the model compares favorably
with that of other PD process models reported in [103].
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Fig. 8. Behavior of the tare weight TPM over four phases of the TPCA project.

Fig. 9. APDP risk calculation inputs for project cost. (a) Probability of failing the final target depending on the actual value at time point X. (b) Impact of failing
the final target depending on the actual value at time point X.

After gaining confidence in the data, the APDP model, and its
computerized simulation, we explored the process space based
on the initial 4000 simulation runs. We will present five results
and associated insights.

Project-Specific Result 1: Fig. 10 shows the frequencies of
different process instances (emergent paths through the project
landscape). The 4000 simulation runs yielded 2550 potential
paths, most of which occurred only once. The single most com-
mon path occurred in only 153 of the 4000 instances (3.8%).

Managerial Insight 1a: Since many process models and con-
ventional project planning tools assume a single process option
(and focus even further on its critical path), these techniques
would seem to have a high probability of yielding mislead-
ing results. A subset of project management literature (e.g.,
on GERT and DSM) has explored probabilistic branching in
predefined networks and come to this conclusion. The APDP
model takes the exploration of a process space to the next level
and underscores the need for methods of planning with the
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Fig. 10. Frequency of occurrence for each of the 2550 unique paths (counts
sum to 4000).

Fig. 11. Final risk indices for the 4000 outcomes, sorted from best to worst.

capabilities to account for process changes and evaluate a vari-
ety of potential outcomes.

Managerial Insight 1b: The ability to combine activities into
a greater variety of process options increases managerial flex-
ibility and value. Starr [109] noted how modular production
capabilities allow for a greater variety of outputs. According
to options theory, greater variety in outcomes can lead to in-
creased value [50]. The APDP model demonstrates the concept
of modular PD process capabilities and holds out the possibility
of similar benefits for project managers.

Project-Specific Result 2: Fig. 11 plots the 4000 process paths,
ranked by their final, overall risk level. Two thousand five hun-
dred and eighty-eight (64.7%) of the paths were considered suc-
cessful in that they reduced the overall project risk to a “low”
level, where “low” was specified as R< 0.2.

Managerial Insight 2: In the APDP model, the simple rules
guiding process adaptation aim to maximize a project’s expected
value by minimizing the portion of that value at risk. However,
all alternative processes do not provide equivalent benefit in
this regard. A large percentage of unsuccessful paths (ones that
do not sufficiently reduce R) could foreshadow an especially
challenging (or ill-advised) project.14 In this case, if a “low”
risk outcome is necessary to justify the project (e.g., in terms of

14The threshold for this percentage depends on the risk attitudes of the
project’s stakeholders.

Fig. 12. Scatter plot of 4000 project cost and duration outcomes.

expected return on investment), then the project should be aban-
doned in 35.3% of the cases (since the other 64.7% of cases were
successful). By calculating the expected value of the project
as the average of the final values of the 4000 outcomes, one
could show how exercising the option of abandonment in more
than a third of these cases would increase this expected value.
Moreover, identifying the specific paths that portend project
failure could provide project managers with leading indicators
of problems (e.g., if they find the project to indeed be on such
a path). These indicators could help forecast if a project should
be abandoned prior to actually reaching the state where all of
the potential next steps have indeed negative expected values.
In addition, the model can show the risk reduction provided by
setting easier targets, and this can be traded off against the cor-
responding reduction in the baseline value of the project (when
R = 0).

Project-Specific Result 3a: A majority of the simulated out-
comes exceed the project cost and duration targets (i.e., the
budget and the deadline—TC and TS , respectively), which are
shown overlaying the scatter plot in Fig. 12 at 154 cost units and
87 time units. (Actual numbers have been disguised to protect
company data.) Managers agreed in hindsight that the cost and
schedule goals for this project were set too optimistically. The
probable number of iterations had been underestimated; correct-
ing even small technical problems would have caused cost or
schedule overruns.

Project-Specific Result 3b: Iteration patterns can be observed
by examining the structures of individual process paths, such as
the two of special interest in Fig. 13. The most likely process
path, shown on the left side of Fig. 13, reduced risk signifi-
cantly in the early phases of the project via “cheap” iterations
using virtual prototyping methods. On the other hand, the worst
path (leading to the least project value) on the right side of
Fig. 13 contained many late, expensive iterations. Since TPCA
usually does product qualification (the final project phase) at
a customer’s site using the actual product (e.g., milk or fruit
juice), any design failure found in this phase (that causes re-
work or retesting) delays the start of liquid food production and
tremendously decreases project value.

Project-Specific Result 3c: The results indicate a high likeli-
hood of design iterations. Only 2.5% of the emergent processes
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Fig. 13. Two interesting process paths out of the 4000.

fulfilled all project goals without iterations. Interestingly, these
were not the paths providing the highest overall project value.
Rather, in these cases, technical performance risk remained
“low” (yet nonzero) throughout the project, which led the simu-
lation to decide against iteration at the state transitions. Hence,
an amount of technical risk was allowed to persist until the end
of the project rather than being driven out. Meanwhile, 97.5%
of the paths included one or more iterations. While the high-risk
process paths had many iterations (e.g., the right-hand side of
Fig. 13), the results indicated that even one to two iterations in
the late phases could have catastrophic consequences. However,
a variety of high-value paths had —two to three iterations in the
early phases.

Managerial Insight 3: These results confirm some previous
findings regarding the significance of iteration and rework as
primary drivers of PD project cost and duration (e.g., [26],
[79], [95]). Furthermore, the APDP model provides a deeper
insight into desirable and undesirable iterations. First, we con-
firm that the amount of iteration does not matter as much as
its timing and scope [13]. In fact, in many cases, iteration is
quite helpful. More specifically, the results support the bene-
fits of additional, early iterations and the detriments of addi-
tional, late iterations. The early iterations also seem to be much
smaller in scope (as there is less other completed work for
them to impact). For example, we find support for the frontload-
ing of activity modes that discover design failures early in the
project and allow for their correction in short, inexpensive itera-
tions [112], [114]. It is, therefore, important to plan for this and
allocate adequate resources to the early phases. However, the
requisite activity modes to support quick and inexpensive—yet

appropriately effective—experiments early in the design pro-
cess must be included in the initial superset of activity modes.
When they are, they may often be selected. Exploring the ex-
act conditions under which frontloading certain activity modes
makes the most sense is an area for continued research. In such
studies, researchers could use the APDP model to explore the
specific ways in which front-loading would best occur. Instead
of merely arguing for a general allocation of additional resources
early in a project, planners could use the model to help identify
the leverage points (specific new or enhanced activity modes)
where these resources could provide the greatest expected
benefit.

Project-Specific Result 4: Fig. 14 shows the frequency of
each activity mode (on the diagonal, as a count) in the 4000
simulation runs. (Iterations may cause an activity mode to occur
more than once per run, which is why many of the entries on the
diagonal exceed 4000.) Interestingly, some activity modes were
very popular, whereas others were rarely picked. For example,
modes 21 and 23 were highly popular, whereas modes 25 and
26 were hardly used. In the first phase, we note that rework
occurred more often through the conventional activity modes
(1, 3, and 5) than through the rework modes (2, 4, and 6). In
phase three, one pair of (conventional and rework) modes (21
and 22) was conducted a total of 23 047 times, while another
pair (25 and 26) occurred only 45 times.

Managerial Insight 4: Interestingly, our results suggest that
high-value PD processes require not fewer activity options (as
suggested by lean) but more. Activity mode frequencies may
provide an indication of their current value to the project.
Since this project included two modes for most activities, it is
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Fig. 14. Frequencies of activities and flow paths in 4000 simulation runs.

interesting to note where either the regular mode (e.g., 19, 31,
and 35) or the rework mode (4, 28, 43) was selected infre-
quently. In such cases, it may be prudent to redesign the less
popular modes by prescribing different technologies, methods,
and/or personnel that change the mode’s attributes. Or, per-
haps a different form of task decomposition would be more
appropriate [36], [119]. Hence, one can pinpoint the “weakest
links” in a process space for strengthening, or perhaps even
removal. Examining a process space offers a more sophisti-
cated avenue toward process improvement than the approach
advocated in the paper on lean or value stream mapping (e.g.,
[124]), for example, where individual activities are determined
to be wasteful (or not) according to their internal characteris-
tics only, without regard to their various modes or the timing
of their occurrence. Our results show that “waste” turns out to
be a dynamic attribute. Because an otherwise value-adding ac-
tivity will be worthless if it is done with incorrect inputs, it is
important to consider activity value from a system perspective
in the context of an overall process [14]. Here, that context is
further extended to a process space containing a large number
and variety of process options. The APDP model considers the
potential value of an activity mode as a contingency or option.
This information can help managers decide where to invest in
developing new modes (perhaps through new technologies and
tools) and where such investments are unlikely to show much
return on a project (because the modes are unlikely to be used).
This way of investigating the prospective value of an activity
accounts for many factors, including its timing (in the process),
EC, and other attributes. Thus, the model and its results may be
used by managers to explore where and how potential additions

and subtractions to the activity mode superset might benefit the
project.

Detailed specification of these capabilities provides another
area for future research. In this realm, one could explore ties
between the use of specific activity modes and successful (sim-
ulated) project outcomes. An area of particular interest could
be to determine where certain activity modes, while unpopular,
might nevertheless prove beneficial in the highest-value paths.
Meanwhile, other modes might be quite popular, yet primar-
ily in the low-value paths. The activity mode usage frequencies
might also inform multiproject planners’ resource allocation de-
cisions. For example, a testing facility that is highly unlikely to
be used by a project could be prioritized for another project.

Project-Specific Result 5: While sometimes the simulation
would select a conventional activity mode for rework, some-
times it would chose a rework mode for initial execution, de-
spite the rework mode’s more stringent EC. Since the simulation
picks the eligible mode with the greatest expected value, pro-
cess states with high technical risk often led to the selection of
conventional modes for rework, and states with low technical
risk often pointed to a lower fidelity version of the activity.

Managerial Insight 5: What will turn out to be the best-choice
activity mode is not always obvious prior to the project. This re-
sult supports the admonition to project planners to delay activity
mode selection until what Smith [102] called the “last respon-
sible moment”—ideally, right before the activity should begin.
This enables project managers to react to unforeseen situations
using a set of “process building blocks.” This insight aligns
with findings on set-based design from the Toyota PD Sys-
tem [77], [104], [120] but applies them in the context of process
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design rather than product design. In situations in which delay-
ing an activity mode decision seems problematic (e.g., because
of long lead-time inputs or the need to presecure resources), the
costs of delay could be traded off against the benefits, as illumi-
nated by simulation of the APDP model and its accounting for
specific activities and deliverables in the context of the entire
process space. While this type of analysis would also be likely
to highlight the inefficiencies attributable to resource inflexibil-
ities and long lead-time items from external organizations such
as suppliers, it would also help managers quantify the specific
benefits of improving the most problematic situations.

C. Reactions From TPCA

The APDP simulation results convinced TPCA that its orig-
inal project plan, defined using conventional methods, was too
optimistic. The project manager had not anticipated the major
risk posed by iteration. The simulation reduced the project’s am-
biguity by highlighting the critical iteration loops (previously
unknown unknowns, caused by interactions among known ele-
ments) and prompting strategies to deal with them. The results
also advanced frontloading as an effective strategy for efficiently
reducing technical risk in an early project stage. Defining alter-
native modes for each activity also proved valuable for TPCA.
Adding just a single rework mode to each activity increased
the flexibility of the project plans and showed that some of
the modes should be sized differently to better suit the project
objectives. APDP modeling also provided the project manager
with new process architecture and activity mode options; these
pointed to unexpected project states and prompted the proac-
tive consideration of appropriate contingencies. Overall, the
application of the APDP model at TPCA demonstrated that
thorough planning and the application of adaptive process sim-
ulation could reduce ambiguity and uncertainty at the outset of
a project by shedding additional light on the territory between
a project’s start and its desired end state. Hence, TPCA rec-
ognized the importance of defining activity modes and other
contingencies early and strategically.

V. CONCLUSION

This paper presents a new, theoretically grounded modeling
framework for the process used to accomplish a PD project.
Rather than charting a single course through uncertain terrain,
the APDP model generates a process space (set of likely paths)
based on the available options (activity modes) for stepping
through the landscape, where the availability of certain steps
depends on one’s current position (i.e., the state of the project).
Unlike prior models of project states, the APDP model accounts
for not only the time and cost but also performance, risk, and
value. Depending on the “terrain” encountered, a subset of the
activity modes will combine (according to simple rules) to form
a path (process) through the landscape. Rather than presuming
that a particular set of activities and interactions is necessary and
sufficient to achieve a project’s goal, the model accounts more
broadly for a superset of potentially relevant activity modes and
interactions. From this “primordial soup,” we explore what types
of processes emerge and their comparative fitness (or value, in

terms of risk reduction) in achieving the goals. The approach
recasts project planning from detailing a single plan to gaining
insight from a process space, via simulated project execution
without extreme prejudice.

The model is intended to apply to any kind of PD project, al-
though, like any model, it will run into difficulties at the frontiers
of project novelty and ambiguity. However, it pushes further to-
ward that frontier than other approaches, because it accounts
for more unrealized interactions between known and potential
elements. It also applies to less-novel PD projects: with greater
knowledge and past experience from highly similar projects, it
is possible to define a much richer initial superset of activity
modes.

Through an initial application to validate the model, we found
and confirmed several insights for researchers and managers. No
single path was found to dominate the process space, which calls
into question the management strategy of planning around a sin-
gle process and critical path. Also, many of the potential paths
that led to a project of unsatisfactory value exhibited patterns that
might prompt managers to abandon the project. One of the most
problematic patterns, late iterations to address lingering techni-
cal risk, occurred much later than most managers would usually
consider abandoning a project. Hence, gaining greater foresight
into such situations becomes critical. Meanwhile, paths that
provided high value often exhibited the characteristics of front-
loaded PD, with many short iterations occurring early in the
project and driving out technical risk more quickly. On another
front, the model provided a basis for exploring the dynamic
value of individual activity modes by illuminating the popular
and unpopular modes. Unlike the literature on lean, which advo-
cates paring down a process to the bare minimum of activities,
we find that the availability of contingent activity modes can lead
to higher value. Thus, the best-value processes may emerge from
building up activities rather than paring them down. Finally, the
model reinforced the benefits of waiting until the last minute to
choose the best activity mode, as this choice could vary depend-
ing on the dynamic characteristics of the project state. We make
no claim that these insights are fully generalizable, yet they pro-
vide a strong motivation for further investigation. In particular,
the model should be further validated in different project and
industry environments, with more sophisticated processes (such
as processes exhibiting greater concurrency), and with more
TPMs.

Despite their prominence in the management science liter-
ature, “insight models” have limited value; decision support
tools are also important [100]. Rather than being just an insight
model, the APDP model supports a variety of managerial deci-
sions on actual projects, including the choice and negotiation of
realistic budgets, schedules, and technical requirements—and,
crucially—where best to deploy available resources. The model
supports these decisions in the contexts of dynamism, uncer-
tainty, and ambiguity that characterize PD. Of course, since there
is no way to guarantee that even a superset of known activities
and modes will be sufficient to achieve project success, working
with a process space does not provide a complete solution for
project ambiguity and unforeseen uncertainty. However, since
De Meyer et al. [30] noted that unforeseen uncertainty often
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arises from the unanticipated interaction of foreseen events, the
APDP model nevertheless provides an important step forward
in addressing it: by accounting for more of what is known about
a project (than is typically included in a baseline plan)—and
a larger variety of interactions among those known elements—
the APDP model gives project managers a much larger portfolio
of ready options for avoiding surprises and dealing with them
when they occur. For example, APDP simulation can tell a
project manager not only that a plan involves risk (e.g., due to a
high likelihood of iteration) but also which iterative loops have
the greatest possibility and how those iterations would likely
affect project value. While it is true that design cycles provide
a key avenue for learning, and thus PD will always include
them, it is important to understand in which phases and to what
extent iterations are assets and where they are liabilities. The
APDP results help clarify more exactly which iterations should
be encouraged or ameliorated, thereby taking the natural next
step beyond the macrolevel insights of conceptual and analyt-
ical models. Finally, it is worth noting that the results of the
APDP model (e.g., the high-value paths) can provide an input
to conventional project scheduling techniques (c.f., [46]).

Corroborating findings at Toyota, where rigid specification
paradoxically accompanied high flexibility [106], the APDP
model similarly demonstrates how increased activity specifica-
tion and project control can nevertheless lead to greater adapt-
ability and higher overall project value. Organizing work into
standardized packages with known inputs and EC empowers
lower level managers to self-organize rapidly in the face of
change. Potentially, with the correct set of rules, executives
and managers may be able to guide the faster emergence of
an optimal process without having to micromanage each state
transition decision, since workers will be empowered with the
information and decision policies to self-organize the work.
Just as a common language gives people a platform for both
quicker and more creative communication, using standard pro-
cess building blocks (activity modes) as the basis for evaluation
allows managers to replan and reassimilate work more quickly
in a dynamic environment. After all, to manage in a context of
unforeseen uncertainty, management must “build in the ability
to add a set of new tasks to the decision tree” [30]. In this,
the APDP model provides a basis for organizational learning
and knowledge management at both the activity and process
architecture levels, which can provide a basis for competitive
advantage [13], [96].

Some of the APDP model’s main limitations include the fol-
lowing. First, the basic model does not account for resource
constraints. While extending the model to account for resource
constraints would not be difficult, extending the decision logic
of the simulation to make appropriate choices under limited re-
sources is not as simple. When two eligible activities cannot
proceed because both need the same resource, it is not clear
which activity choice is best. This classic quandary has been the
subject of a great deal of research.15 Second, use of the model
requires relatively more up-front planning than traditional ap-

15The APDP model’s value-based decision logic might provide an interesting
new priority rule heuristic to investigate in this regard.

proaches such as the critical path method. However, in this sense
the model provides “a stone in the shoe for better data” [66] by
prompting investigation and learning about the ambiguous as-
pects of a project. Third, like any model, the APDP model is
not a replacement for a good project leader who maintains the
global perspective of the project’s (and its parent organization’s)
overall goals.

The APDP model presents still other opportunities for fur-
ther research. While Section IV-B mentioned several such ar-
eas, those represent only a few of many interesting areas of in-
quiry. Beyond these, the activity mode sets, the resulting process
spaces, and their potential roles in project knowledge manage-
ment and organizational learning, seem worthy of further study.
Second, an optimal value path for a given set of goals may not
be robust to providing value across a variety of goals; hence,
value could be considered even more broadly in the context of
dynamic goals. This would link the model of the project to its
environment and allow study of an emergent project process in a
dynamic environment [122]. Similarly, can a better overall path
be found without necessarily choosing the activity mode with
the highest expected value at each state transition? Could doing
so trap the simulation in local optima? Third, it would be inter-
esting to explore the organizational structure that best supports
an adaptive PD process. In some cases, it may be better to di-
vide a project temporarily into two processes to achieve higher
long-run performance [101]. Fourth, it is also important to un-
derstand how people would self-organize and operate within the
usage of the APDP framework for collaborative design, when
product performance is a rugged landscape without a single op-
timum design upon which to converge [56]. Fifth, the various
patterns (such as iterations) that emerge in processes with dif-
ferent levels of value might be amenable to further classification
and understanding [27].
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