

CHAPTER 1
A representative sample of the book’s contents

from

Flexible Product Development
by

Preston G. Smith

Copyright © 2007, 2018 by Preston G. Smith. All rights reserved.

1

 1

 UNDERSTANDING FLEXIBILITY

It is not the strongest of the species that survives, nor
the most intelligent, but the one most responsive to
change.

 —Charles Darwin

Flexibility has existed in industry for years, but the emphasis has
been different from what this book addresses. To sharpen per
ceptions of the many flavors of flexibility, I start, a bit negatively,
by mentioning some types of flexibility that are not my focus here.
	 Manufacturing professionals have embraced flexibility for a
couple of decades. A technique from Toyota called “single-minute
exchange of die” (SMED) has allowed them to change manu-
facturing tooling, such as the dies used to stamp body panels, in
minutes rather than days, thus changing from making one part to
making another one far more easily. Similarly, flexible machining
centers allow manufacturers to change from machining one part
to machining another one instantly, which further enables them
to move from making one product to making another with little
changeover cost.
 	 Going further, product development professionals have moved
these lessons upstream by designing families of products (sometimes
called platforms) that allow so-called mass customization, that is, the
ability to adapt a product late in manufacturing—or even in distri-
bution—to meet the needs of an individual consumer.
 	 This is a popular view of product development flexibility, but
it is not what I address here. Instead, I’m talking about the changes
that occur during the process of developing the product. In particular,
this book addresses a growing conflict between so-called best

2 1 . UNDER STANDING FLEXIBIL ITY

practice in product development—which says that one should plan
the development project and then follow the plan—and the reality of
today’s industrial environment—where change from original plans
is the norm, not the exception. I discuss this conflict more in the next
section, but at this point it’s useful to define the type of flexibility
covered in this book:

 Product development flexibility: The ability to make changes in the
product being developed or in how it is developed, even relatively
late in development, without being too disruptive. The later one
can make changes, the more flexible the process is. The less disrup-
tive the changes are, the more flexible the process is.

 	 You might be tempted to create such a mathematical formula:
flexibility equals time-into-project times lack-of-disruption. Unfor
tunately, it is more complicated, because each change is different
and leads to a different amount and kind of disruption. One change
might affect marketability of the product, while the next might
waste development labor. Furthermore, a change that is harmless in
one phase of the project could be disastrous in the next.

 Dealing with Change

Change is fundamental to product innovation, which, after all, is
about bringing something into being that hasn’t existed before. The
more innovative your product, the more likely you are to make changes
during its development .
	 Recent studies show that innovation connects strongly with
long-term corporate success, and corporate executives regularly list
innovation as a top critical success factor. For example, one global
survey ranks innovation as the top strategic priority for 40 percent
of senior executives and among the top three strategic priorities for
72 percent of these executives.1 Nevertheless, research shows that
corporate product portfolios are becoming less innovative. See Figure
1.1, which shows that over a fourteen-year period and over a broad

range of industries, the proportion of truly innovative products in
corporate portfolios has decreased while the proportion of simple
upgrades in portfolios has increased. In short, innovation is vital
to business success, but contemporary businesses are losing the
innovation battle.
	 Why is this? Many possible explanations come to mind,
but I believe that it is due to competitive pressures and a short-
term outlook forced upon executives by the financial markets.
Today’s executives simply cannot afford to be wrong. Seeing the
great advances achieved in the factory by driving variation out
of the manufacturing process, they also want to reduce product
innovation to a predictable activity. This also explains the current
great interest in Six Sigma, which is a methodology to drive
variation out of all parts of the business.
 	 Six Sigma, ISO 9000, and similar quality systems are not the only
culprits. Stage-Gate, PACE (Product and Cycle-Time Excellence),
NPI (New Product Introduction), PDP (Product Development

DE ALING WITH CH ANGE 3

-60	 -40	 -20 0
Percent change 1990–2004 in product

portfolio category

20 40 60 80 100

New to the world

New to the
company

Figure 1.1 Decline in Innovation, as Shown by Portfolio Shift:
1990—2004

Source: Cooper, 2005.

Additions to
existing products

Improvements and
modifications to
existing products

4 1 . UNDER STANDING FLEXIBIL ITY

Process), and similar phased product development systems encour
age heavy up-front planning followed by sticking to the plan. And
you can add to these the phenomenal recent growth of project
management,2 project office, and similar methodologies that pro
mote a plan-your-work, work-your-plan approach.
	 None of these approaches is misguided or has net negative
effects. When applied to high-risk, highly innovative programs,
however, they have had an unnoticed side effect of putting innova
tion in a straitjacket, thus making it increasingly difficult to make
changes in projects midstream in development. Those who must
make such changes are often penalized and regret what they are
doing—when, in fact, they are innovating. For stable projects, the
current trends of greater planning and control are properly aligned,
but for the more volatile ones aimed at correcting the portfolio
problem illustrated in Figure 1.1, developers need more flexibility to
make midstream changes.
 	 What kinds of changes are these?3 The first group is changes in
customer requirements. Often, customers must see the actual prod
uct before they can relate to it, the IKIWISI (I’ll know it when I see
it) phenomenon. Sometimes they have unanticipated difficulties
in using early versions of the product or they try to use it in unan
ticipated ways. Often they find completely new uses for or ways of
using a product. Software developers call these emergent requirements,
because they emerge in the course of development and no amount of
market research is likely to uncover them in advance. Occasionally,
features introduced by competitors drive changes. As customers or
developers try prototypes, they discover better or cheaper ways of
delivering the specified customer benefits.
 	 Related are market changes. Competitors come into being or go
out of business. They introduce unanticipated and disruptive prod
ucts. Markets change in response to fads, shifts in customer prefer
ences, government or regulatory action, or political events. Often,
markets are new and thus poorly understood; for instance, it took
3M, manufacturer of Post-it brand sticky notes, nearly a decade to
find a market for this item, which is indispensable today.4

	 Then there are technology changes. Sometimes a new tech
nology does not work as advertised. Or it may work better than
expected, and developers want to exploit this. It may have unex
pected side effects or require additional work to render it accept
ably reliable or user friendly. Sometimes patent infringement or
licensing problems arise.
 	 World events, such as terrorism or global warming, can lead to
changes in a development project.
	 The next group might be called network changes. Seldom
do companies today develop a product entirely by themselves.
Sometimes they engage consultants who are expert in a particu
lar area. Often a supplier provides components. Increasingly,
partners develop subassemblies from general guidelines.
Complicating this, these partners tend to be located in distant
parts of the world. Such broad and dispersed networks are fertile
ground for changes. For instance, a supplier receives a big, urgent
order from another customer—maybe even your competitor—that
compromises your order.
	 Finally, there are organizational changes. Managers are pro
moted or reassigned. Key employees leave. Managers move devel
opers from project to project to resolve changing priorities. Project
budgets are cut. Management lets some initiatives wither while
starting new ones.
 	 What can you do about these changes? You may have other
options, but I see three. First, you can move faster to minimize your
exposure to change. This is an approach taken in agile software
development, and one I have recommended in the past. 5 Agilists
divide development into short iterations, typically of one to four
weeks each. Then they can freeze the plans during an iteration
while replanning between iterations. Broadly speaking, rapid
development techniques rely on working quickly enough to avoid
change during development.
	 Second, you can plan better in hopes of anticipating change.
This is the approach followed by Six Sigma, phased development,
and similar techniques mentioned earlier that emphasize more

DE ALING WITH CH ANGE 5

6 1 . UNDER STA NDING FLEXIBIL ITY

formal customer research, more structured risk management, and
similar up-front work. This book also develops anticipation as a
flexibility technique in certain cases. But the amount of anticipa
tion possible is severely limited. An analogy here is the needle-in-a-
haystack metaphor. Imagine building up a haystack by tossing more
hay on top. Then, as the stack grows in all three dimensions at once,
the difficulty of finding a needle in the midst of all that hay (that is,
anticipating a certain change) is proportional to the third power of
the haystack’s height, which is analogous to how far in the future you
are forecasting. See Figure 1.2.
	 This is an apt metaphor. Real-world projects change in several
dimensions at once, so anticipating a certain change becomes increas-
ingly difficult as one tries to extend the forecasting horizon. Eventu-
ally, the work put into planning to anticipate change reaches a point
of diminishing returns.
	 Third, you can build a process and apply tools and approaches
that are more tolerant of change—ones that accommodate and
even embrace change as a natural consequence of working in the

Figure 1.2 Difficulty of Finding a Needle in a Haystack

0

200

400

600

800

1000

Height of haystack

D
iff

ic
ul

ty
 o

f f
in

di
ng

 n
ee

dl
e

0	 2	 4	 6	 8	 10

innovative domain where change is the norm. This is the direc
tion I offer in this book. Change can have great opportunity
associated with it, and it is better to exploit that opportunity than
to suppress it.

 How Much Flexibility?

From the definition of flexibility provided earlier, it would be easy
to conclude that the more flexibility, the better. But flexibility can be
expensive, so it must be used with discretion. This is an area where
cost-benefit thinking pays off.

Benefits of Flexibility

 The benefits of flexibility connect directly with the degree of inno
vation you seek. Figure 1.1 suggested that new products could
benefit from more innovation, and this is generally true. But new-
product experts also agree that a new-product portfolio needs
balance between innovative products and line extensions. 6 In gen
eral, mature products provide reliable income for today; innovative
ones ensure that you will be in business tomorrow.
	 Consequently, apply flexibility where you must be innovative.
You can do this at several levels:

•	 Some markets for your products change faster than others.

•	 Some product lines within a company change more than others.

•	 Some products within a line are more subject to change
than others.

•	 Some portions of a product are subject to greater change than
others, due to immature technology, unstable customer needs, or
market flux.

•	 Some departments or disciplines change faster than others, for
example, the electronics in an airplane change much faster than
its structure.

HOW MUCH FLEXIB IL ITY? 7

8 1 . UNDER STA NDING FLEXIBIL ITY

	 This is where competitive advantage resides—in distinguishing
where the organization is going to pursue innovation and thus needs
flexibility, and where it will encourage stability and its associated
economies. No simple rules apply here, but these decisions should
stem from your corporate strategy and from an understanding of the
uncertain spots in your technologies and markets.
 	 After this chapter, this book provides tools and approaches for
enhancing flexibility. You should decide where and to what degree to
apply them. Use discretion, but remember Figure 1.1: you probably
could benefit from considerably more flexibility than you have today.

 The Cost of Change

Managers resist change in a project—quite correctly—because
it is expensive, and change usually leads to schedule slippage.
Furthermore, change can open the door to product defects. So any
attempt to encourage change must consider its cost. Although
each change has different effects on the project, the cost of a
change, in general, rises the later it occurs in the project. Barry
Boehm has collected data for the cost of fixing an error in a large
software program, averaged over many large projects from TRW,
IBM, GTE, and Bell Labs. As shown in Figure 1.3 , the cost rises
exponentially by a factor of 100 from the requirements phase
(cost: 1.6) to the operational phase (cost: 170). (Similar data for
a few small, less formal software projects, however, indicate that
these smaller projects only increase the cost of change by a factor
of 5 from requirements to operation).7
 More recent data from Boehm confirm that the factor of 100 still
holds for contemporary large projects, and he has also found that the
Pareto principle applies: 80 percent of the cost of change comes from
only 20 percent of the most disruptive changes, namely, those with
systemwide impact. 8 Furthermore, this group of expensive changes
is usually identifiable in advance, and by applying the tools covered
in this book, you’ll find you can often avoid them. This, plus the

fact that the cost of change is lower for small projects, is very
good news. Product developers can take advantage of both
these opportunities.
 	 Earlier I suggested applying flexibility selectively and at a level
where you believe change is most valuable or likely. Now another
criterion appears for selecting the areas where you wish to be
flexible: avoid the areas with systemwide impact—the ones most
likely to have a high cost of change (if you cannot resolve them by
using the tools in this book).
 	 A word of warning. The cost of change is a hotly debated topic
among developers, usually based on their own undocumented
experience or perceptions. As far as I know, Boehm’s data provide
the only carefully collected and documented information available.
Boehm himself is highly regarded and has collected his data

Figure 1.3 Cost of Changing Software

Source: Boehm, 1981, p. 40.

HOW MUCH FLEXIB IL ITY? 9

10 1 . UNDER STANDING FLEXIBIL ITY

from many sources over thirty years. You are likely to hear “rules of
thumb” that the cost of change escalates by a factor of 10 for each
phase of development, which would raise the Figure 1.3 factor to
100,000! Such factors seem to be pure conjecture. Please question your
sources on the cost of change.
 	 Also, notice that all of Boehm’s data are for software projects,
which unfortunately limits their application to other fields. I have
thus far found only one limited source of cost-of-change data for
mechanical, electrical, chemical, optical, or mixed systems, but I have
little reason to doubt that Boehm’s findings carry over in general. 9
 	 Usually, discussions about the cost of change revolve around a
graphic like Figure 1.3 , but as the discussion here suggests, we know
little quantitatively about the cost of change. Nevertheless, this is
a valuable concept, because midstream changes do have associated
costs that should be kept in mind continually and tied to the related
benefits of flexibility. Many of the tools in this book aim at reducing
the cost of change.

Managing the Convergence of Flexibility

Figure 1.4 shows three levels of flexibility after the initial planning pe-
riod. The restricted flexibility level is the most common, as it fits with
popular good practice in phased product development. At the outset,
the project has complete flexibility, since nothing is fixed yet. But at
the end of the initial (planning) phase, the project budget, schedule,
and product requirements are established and approved. From here
on, this project has restricted flexibility, as shown in the figure.
 	 Next, consider the completely flexible zone in the figure. In this
idealized case, the ability to make changes is left wide open until the
end of the project. This yields lots of flexibility but also leads to chaos
at the end of the project when nothing is yet certain. The project
schedule will most likely stretch, as will the budget. Consequently,
complete flexibility is not a useful objective.

	 A project managed for flexibility will look like the moderately
flexible zone in the figure. It starts with a great deal of ability to
make changes. Decisions are not made until they must be made—
what I describe in depth as the “last responsible moment” in
Chapter Seven. But decisions are made when necessary, often by
progressively tightening up tolerances on variables. Thus the ability
to make changes narrows methodically as development proceeds. At
Toyota, a major duty of engineering managers is to manage the rate
of convergence of the design space: not so fast as to rule out change
unnecessarily but not so slow as to leave too much uncertainty late
in the project.

 The Downsides of Flexibility

Flexibility has its place, which is in projects or portions of projects
where change is likely to occur. However, this ability to accommodate
change can be abused by managers who introduce unnecessary

Figure 1.4 Three Levels of Managing Flexibility in a
Development Project

Moderately f lexible

Completely f lexible

Project
approval

In
it

ia
l f

le
xi

bi
lit

y

Restricted f lexibilityEa
se

 o
f m

ak
in

g
ch

an
ge

s

Time from beginning of project

HOW MUCH FLEXIB IL ITY? 11

12 1 . UNDER STANDING FLEXIBIL ITY

change simply because the system is now more tolerant of it. Think
of a high-performance motorcycle: it can get you to your destination
quickly, but it can also get you into the hospital quickly. To survive,
you must ride your motorcycle with skill and wisdom.
	 Similarly, an advantage of a flexible approach is that it can follow
customer reactions quickly, but if the customer vacillates or is flighty,
the project can become chaotic.
	 Flexibility can be a crutch for indecisiveness, for not committing
to decisions, or for reversing prior decisions. Sometimes, flexibility is
abused by those who do sloppy research or planning, thinking that a
flexible system will allow their work to be fixed later. More broadly,
it can be an excuse for skipping the planning and thus emphasizing
firefighting and tactical views over a strategic view.
	 If you use flexibility as an excuse to be sloppy, you will derive no
benefit from it.

 The Roots: Agile Software Development

To my knowledge, no other books on flexible product development
have been written, and only a few articles. However, non-software
developers can draw on a rich body of material in a parallel field:
agile software development. Although its roots go back further,
agile development has arisen since about 2001. Its starting point is
the Agile Manifesto (see Exhibit 1.1), which appeared in February
2001. The annual agile conference has grown in attendance from
238 in 2001 to 1,111 in 2006, a compound annual growth rate of 36
percent. More than fifty books and countless articles now exist on
agile software development; Craig Larman provides a good over
view.10 The remainder of this chapter provides some highlights of
agile development to provide background for the non-software
flexibility material covered in later chapters. Toward the end of this

chapter, I discuss the differences between software and non-soft-
ware development that prevent us from adopting the agile develop-
ment approaches directly.
 	 I refer to the Agile Manifesto more later, but for now, notice
that it is four statements that contrast values. Although the second
value of each pair is acknowledged as being valuable, the agilists
emphasize the first value more. Also notice that the second values
align closely with generally considered “best practice” in the tra
ditional development of new products (product development can be
substituted freely for software development in the manifesto). The
themes of the Agile Manifesto pervade the agile approach to soft
ware development. Accompanying the manifesto is a set of thirteen
principles that underlie it.11

Exhibit 1.1 Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

 	 Individuals and interactions over processes and tools
 	 Working software over comprehensive documentation
 	 Customer collaboration over contract negotiation
 	 Responding to change over following a plan

	 That is, while there is value in the items on the right, we value
the items on the left more.
 	 Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
 Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron
Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber,
Jeff Sutherland, and Dave Thomas.

The Agile Manifesto. © 2001, the above authors. This declaration may be freely copied in any form,
but only in its entirety through this notice. Source: agilemanifesto.org (Accessed August 31, 2018).

THE ROOTS: AGILE SOFTWARE DE VELOPMENT 13

14 1 . UNDER STANDING FLEXIBIL ITY

	 In practice, agile software development is a collection of about
seven identifiable methodologies:

•	 	Extreme Programming (XP)

•	 	 Scrum

•	 	 Adaptive Software Development

•	 	Crystal (a collection of methods for various types of projects)

•	 Lean Development

•	 Dynamic Systems Development Method (DSDM)

•	 	 Feature-Driven Development (FDD)

On a given project, developers often use a mix of these methods, a
combination of XP and Scrum perhaps being most common.
	 More important than the differences between these methods
is the commonality among them. They all follow the Agile Mani
festo. They all develop software in short iterations—from one to four
weeks, occasionally to six weeks. They all produce working software
at the end of each iteration. They all deliver releases to customers
frequently. They all involve the customer either directly or through a
surrogate (such as a product manager), usually at the end of each iter
ation and sometimes on a daily basis. They all invite change at the
end of each iteration (but essentially prohibit it during an iteration).
They all tend to do planning and risk management as they proceed
with the iterations. They all emphasize small, co-located teams. They
all use emergent processes (those that emerge during the project, not
determined at the beginning of the project). Observe that most of
these characteristics can be adapted to non-software projects.

Extreme Programming

Extreme Programming (XP) is perhaps the most widely discussed
and illuminating of the agile methodologies, so it’s worth consider
ing in detail.12 It is based on a dozen or so practices that fall into the
context of about four values. Although the values actually come

first, I will start right off with the practices. Once you absorb them,
the values that create an environment in which the practices have a
chance of working will make more sense.

 XP Practices

I use the terminology of those who practice XP here so that you
can become used to it, then switch to more conventional product
development terminology later. I urge you simply to observe these
practices now without concern about how they might ever apply to
non-software products. This is the task of later chapters. However,
do observe as you read these that many of them improve flexibility
by lowering the cost of change.

 	 The Planning Game. Some people accuse agilists of not plan
ning. True, initial project planning may be light—because so
much is likely to change before it is used—but this is more than
compensated for by detailed planning within an iteration. This
iteration planning is always a balance of business and customer
needs against the team’s capability and capacity. The business and
customers lead in deciding on the features to be developed, their
priorities, and the timing for a release (a release usually comprises
several iterations). The developers lead in estimating how much
effort a feature will require (and thus how many features can be
completed in an iteration), the work processes the team will use,
and detailed scheduling and prioritization within an iteration. The
important factors are that developers plan iteratively and that
there is strong interplay between the business or customer people
and the technical people—and clear roles for them all.

 	 Small Releases. The emphasis is on small and thus frequent releases
to customers to enhance opportunities for feedback and flexibility. For
instance, a company using these techniques for educational software
used in public schools (not an industry subject to frequent change)
plans releases every eight weeks. Clearly, this requires that the fixed

THE ROOTS: AGILE SOFTWARE DE VELOPMENT 15

16 1 . UNDER STANDING FLEXIBIL ITY

cost of a release, such as costs of documentation, training, and flush-
ing the distribution channel of old products, be reduced.

 Product Metaphor. This is a vision of the product, held in
common by the team, that indicates what it will do or how it will
differ from what exists now. It provides the team with a compass
to know whether it is going in the right direction in the stormy
seas of change. I cover product visions in detail in Chapter Two.
Of all the practices of XP, this one has been the most difficult
to implement. This may be because a metaphor cannot capture
all products crisply, or it may be that it has not received enough
attention, whether by the methodologists in describing how to
create a metaphor or by the teams in allocating adequate time for
creating a captivating metaphor.

 Simple Design . This one runs counter to the way designers
normally operate. It says that one should design and implement
only what is necessary to satisfy today’s requirement or what the
customer needs today. The idea is that if the landscape is chang
ing constantly, speculating on tomorrow’s needs will most likely be
wrong. Not only does this waste resources, it complicates the design
and thus raises the cost of change for tomorrow’s work. The agile
term for this is “barely sufficient.” Following the fourth item of the
Agile Manifesto, it means that one places more value on adapting
than on anticipating. Note that while this premise is appropriate
for projects subject to a great deal of change, it is not wise for
projects that are predictable. Also, it runs counter to the principle of
providing reserve performance, which I cover in Chapter Three.

 Test-Driven Design. Much like non-software development,
software traditionally is developed in large batches of features.
When development is complete, programmers turn their code over
to a tester, who then designs tests to ensure that the features work
properly and do not cause damage elsewhere. XP turns this

around by having the programmer, working a feature at a time,
write the test first and then code the feature to pass the test,
rather like being offered the final exam when you start a class.
Among other things, this encourages simple design, because
developers can code a feature in a barely sufficient way to pass
the known test. In addition, they write all tests to be automated
with a clear pass/fail outcome for each one, so that tests
accumulate and can be run repeatedly to confirm that existing
features still work as others are added.

 Refactoring . This is a process of cleaning up code without
changing its behavior. The cleanup could be to render it more
understandable, to improve its internal consistency, to streamline
its design or remove duplication, or to make it easier to work with
in the future. Explicitly, refactoring does not add capability to the
code. There is nothing basically new here: programmers have often
cleaned up code as a first step in preparing to modify it. But in
XP and other agile methodologies, refactoring is a routine activity
done apart from adding new features and, indeed, whenever an
opportunity to refactor appears. Agilists are meticulous about
the cleanliness of their code, as this keeps the cost of change low.
Notice that the automated tests just mentioned are a prerequisite
for refactoring, because the developer must run the refactored code
through the test suite to confirm that its behavior hasn’t changed.

 Pairing (Pair Programming13). XP requires that all production
code be written by two programmers sitting at one computer with
one keyboard and one mouse. One of them, called the driver, enters
code while the other, the navigator, plays various roles as needed:
strategist, checker, planner of next steps, or contrarian. They operate
as equals, and they trade roles a few times every hour and change
partners once or twice a day. Although you might assume that this
would double labor costs, several studies have shown that it adds
10 to 15 percent to costs while reducing defects by about 60 percent
and shrinking schedules by about 45 percent.14 A major benefit

THE ROOTS: AGILE SOFTWARE DE VELOPMENT 17

18 1 . UNDER STANDING FLEXIBIL ITY

is that it gives everyone a shared understanding of all of the code,
which sets us up for the next practice, collective ownership.

 Collective Code Ownership. This means that the entire team
owns all the code, and anyone on the team has the right to change
any of it at any time—in fact, the obligation to refactor it if an
opportunity to do so appears. Clearly, this could lead to errors, but
pairing and continuous automated testing protect against undesir
able results. A major advantage of collective ownership is that the
code is not hostage to the specialist who created any particular
part of it, again lowering the cost of change.

 Continuous Integration. Pairs may be working with their version
of the code, but they frequently integrate it with the common
version on the server and run all the automated tests immediately.
Then they discover quickly if they have broken the code (that’s fast
feedback , an important theme of this book). Clearly, the beauty
of this is that problems surface quickly and clearly compared to
the normal situation, where integration happens infrequently,
obscuring the fault. Notice that continuous integration takes
advantage of modern technology (fast computers and easy-to-use
integration software) for process advantage, which is another theme
of this book.

 Sustainable Pace. All agile methods are people-oriented. The
authors of the Agile Manifesto were no strangers to the burnout—
or death march, as one popular book on software development
is titled—that accompanies too many software development
projects. Although this concept does not appear in the manifesto
itself, it is explicit in the published principles behind the manifesto.
The rule in XP is clear: if you work overtime one week, you can’t
work overtime the next week. The thinking is that if a problem
requires two consecutive weeks of overtime, more overtime will not
fix it.

 Customer on the Team. We all recognize the value of having access
to a customer when detailed questions of usage surface or

priorities must be set under limited resources. Again, XP goes to
the extreme. The rule is that a real customer must sit with the team.
As you might guess, teams sometimes sidestep this, but it stands
as the XP rule nevertheless. Observe that many software projects
are IT (information technology) ones done for a customer who is
within the organization, for example, order-taking software for the
company. Thus, for many XP projects, it is easier to identify and
assign a customer than it would be for many non-software projects.

 Coding Standards . The practice of maintaining coding stan
dards supports other practices, such as collective ownership, pair
ing, and refactoring. With so much built-in fluidity (to provide
flexibility), the team simply cannot allow a laissez-faire approach
to formatting, style, and similar matters. It should be impossible to
tell who wrote which part of the code. The team can establish its
own standards or it can assume them from company standards or
those supplied by the software language in use. Common standards
are one strength that Toyota uses to remain flexible much deeper
into the development process than its competitors. V iewed another
way, by standardizing things that normally remain constant, you
gain latitude to let variability run longer in the design itself.

	 It is important to recognize that the practices do not stand
alone. They fit together and support one another mutually. There is
a worn story about two programmers meeting and one says, “We are
doing XP.”
 	 The other asks, “Are you doing pairing?”
 	 “No.”
 	 “What about test-driven design? Are you doing that?”
 	 “Nope.”
 	 After a couple more rounds, in frustration, the first programmer
asks, “What are you doing?”
 	 “We’ve stopped doing the documentation.”
 	 Clearly, effective use of XP goes beyond eliminating obnoxious
activities; it must extend to recognizing that these practices are
designed to fit together like a puzzle to provide a safety net for

THE ROOTS: AGILE SOFTWARE DE VELOPMENT 19

20 1 . UNDER STANDING FLEXIBIL ITY

one another. For example, see Figure 1.5, which shows the support
structure for one practice. Similar support is possible for all the
other practices as well. 15

How Did XP Arise?

The story about how XP started is instructive. 16 Kent Beck, one of
the originators of the technique, was consulting at Chrysler in 1996
when he was asked to lead a programming team. He observed what
seemed to be best practices and asked the team to do them, things
such as testing early in the project and co-location. The next time,
there was more at stake and he was under pressure, so (as he told an
interviewer later), “I thought, ‘Damn the torpedoes’ … [and] asked
the team to crank up all the knobs to 10 on the things I thought
were essential and leave out everything else.” So, for example, test
ing early seemed to be a good idea, so why not write the test before
writing the code? Co-location seemed to be beneficial, so why not
put two programmers side by side? Thus, XP was born. What are
you doing today that is working and might be cranked up to 10?

XP Values

Extreme Programming may not be completely transferable outside
the software development world, but its underlying values are.
What are they? Beck lists four: communication, simplicity, feedback,
and courage. 17

 Communication. Communication is at the very core of much
of human activity, and nowhere more so than in product devel
opment. Good communication is difficult. We forget to tell
people things that are critical to their work, or we are unaware
that this information is critical to their work. Sometimes we hide
information purposely, because it is embarrassing. On occasion,
people ignore what we are saying or they miss it because they are
distracted by something else.

Fi
gu

re
 1.

5
“S

af
et

y
Ne

t”
 fo

r C
ol

le
ct

iv
e

Co
de

 O
w

ne
rs

hi
p

C
on

ti
nu

ou
s

in
te

gr
at

io
n:

In

te
gr

at
e

an
d

te
st

 th
e

sy
st

em

m
an

y
ti

m
es

 a
 d

ay
.

Te
st

-f
ir

st
: W

ri
te

te

st
 b

efo
re

 w
ri

ti
ng

co

de
, a

nd
 u

se
 it

fo

r c
on

ti
nu

ou
s

in
te

gr
at

io
n.

Pa
ir

in
g:

A
ll

pr
od

uc
ti

on

co
de

 is
 w

ri
tt

en

w
it

h
tw

o
de

ve
lo

pe
rs

 a
t

on
e

co
m

pu
te

r.

C
od

in
g

st
an

da
rd

s:
Pr

og
ra

m
m

er
s

fo
llo

w
 ru

le
s t

o
en

su
re

 th
at

 th
e

co
de

co

m
m

un
ic

at
es

 it
s

in
te

nt
.

R
ef

ac
to

ri
ng

:
K

ee
ps

 c
od

e
cl

ea
n,

al

lo
w

in
g

be
tt

er

tr
an

sp
ar

en
cy

.

C
ol

le
ct

iv
e

co
de

 o
w

ne
rs

hi
p:

A
ny

on
e

ca
n

ch
an

ge
 a

ny

co
de

 a
t a

ny
 ti

m
e

22 1 . UNDER STANDING FLEXIBIL ITY

 	 When we are working in the flexible mode, another dimension
enters: communicating the certainty or flexibility in your basic
statement, for example: “I would like to have ten units by Friday
so that I can test them over the weekend, but next Tuesday is my
absolute deadline. And if you can’t get new ones at a decent price,
functional used ones will do.”
 	 Another factor that enters these days is the effect of cultural
factors on communication. For example, I do some training for
a Chinese training company, and I recently went with them to
conduct a workshop in India. The Chinese trainers were amazed
at the contrast between the two countries. In China, the students
are reticent, and we spend our time drawing them out and seeding
a discussion. In the Confucian manner, subordinates defer to the
boss. In India, it is the opposite: the discussion expands and we must
strive to manage it and bring it to closure. Each participant has an
opinion that must be expressed.
 Simplicity . In XP, simple design and refactoring aim directly
at simplicity. The idea is that something simple is easier than
something complex to understand and thus to change. Complexity
hides problems and extends the time needed to understand how
something works and would work if you were to change it. In other
words, simplicity lowers the cost of change. As Albert Einstein put it,
“Everything should be made as simple as possible, but not simpler.”
The principles provided with the Agile Manifesto describe simplicity
as the art of maximizing the amount of work not done.
	 Simple design is a knobs-at-ten approach to simplicity that,
as noted earlier, does not always apply. However, the value of sim
plicity is much broader than this. Most of us overload ourselves when
we travel with clothing that we never wear, we cover our desks with
piles of paper that have outlived their utility, and we carry older,
low-volume products in inventory just in case someone wants them.
Simplicity is about clearing out these things in order to be clearer
and more adaptable where it matters today.

 Feedback. Feedback drives flexible systems better than plans
do. The fourth value of the Agile Manifesto is “responding to
change over following a plan.” Note that half of the XP practices
exploit feedback:

•	 The Planning Game, to plan the current iteration based on
what you learned from the preceding one

•	 Small Releases, so that you can learn early what the market
place thinks

•	 Test-Driven Design, so that you discover quickly whether your
work is right

•	 Pairing, to correct incorrect thinking even earlier
•	 Continuous Integration, to learn sooner whether you

have problems
•	 Customer on the Team, to know what the customer thinks as

early as possible

 Courage . When Kent Beck said “Damn the torpedoes” and
cranked the knobs up, he didn’t know if it would work. That took
courage. Several of the XP practices require courage. One is simple
design—purposely not putting in the design what you might need
tomorrow. It takes courage to refactor code that someone else wrote,
possibly causing it to break. Pairing takes courage; it is a good way
to get your ego bruised.
 	 Observe that courage is supported by the other values of com
munication, simplicity, and feedback. Good communication gives
you the best information for taking action, so you have the best
chance of success. Simplicity allows you to see through the haze,
further raising your chances of success. And feedback allows you to
revise and redirect quickly if you are wrong.

 Does XP Work?

Extreme Programming is certainly a radical departure from tradi
tional “best practice” in software development. What is its record

THE ROOTS: AGILE SOFTWARE DE VELOPMENT 23

24 1 . UNDER STANDING FLEXIBIL ITY

of accomplishment? You certainly can find naysayers who trot
out failures, and you can find plenty of advocates with wonderful
success stories. Perhaps the most even-handed assessment is reported
by Boehm and Turner, who advocate a balance between agile and
traditional methods.18 They found that for thirty-one agile
(mostly XP) projects in several industries (aerospace, computer, and
telecom, among others), compared to traditionally run projects of
similar complexity:

•	 All were average or above average in budget performance.

•	 All were average or above average in schedule compliance.

•	 All were roughly the same as traditional projects in
product quality.

They also observed that these projects followed most XP practices
strongly, but that a full-time co-located customer and a forty-hour
week were admirable aspirations but difficult to achieve in practice.
	 The big advantage of these methods for us is in flexibility.
During each iteration (one to four weeks), the set of features being
implemented is replanned, so

•	 Customers or marketing people can add a new feature in under a
month with no penalty.

•	 They can drop a feature that hasn’t been processed yet with
no penalty.

•	 Management can terminate the project at any time with the
most valuable features completely coded and tested.

However, XP has been used mostly on smaller projects where it
was possible to have a co-located team in one room (I have much
more to say about co-located teams in Chapter Six). Also many of
these projects were internal IT ones where it was relatively easy to
involve the customer. As experience with XP and other agile

methodologies is growing, however, these restrictions are
loosening.19

 Moving from Software to Other Products

Software is a special medium that lends itself to agile
approaches. Here are some of software’s characteristics that
agilists have exploited:

•	 Object technologies, which allow modularization to isolate
change and enable substitution of modules

•	 The low cost of an automated build, which facilitates frequent
and early testing

•	 The logic basis of software, which allows relatively fast
automated checking for many types of errors

•	 Relatively easy divisibility of product features, which enables
developing a product feature by feature and subdividing features
to split tasks

•	 (For IT projects) customers who are relatively easy to find and
involve in development

•	 In general, the malleability of the software medium, which
makes change relatively easy

	 Nevertheless, agilists have worked hard to exploit the spe
cial characteristics of software to their advantage. Many of the
principles agilists exploit apply equally to non-software products,
principles such as iterative development with customer feedback,
self-organizing teams, and emergent processes. We can exploit the
special characteristics of non-software media to our advantage. For
example, an advantage mechanical systems possess is that they are
quite visible, lending themselves to physical prototyping, and elec
trical systems have the advantage that programmable components,
such as field-programmable gate arrays, allow quick changes in a
system that may be difficult to redesign and rebuild quickly.

MOVING FROM SOFTWARE TO OTHER PRODUCTS 25

26 1 . UNDER STANDING FLEXIBIL ITY

 	 Consider how Johnson & Johnson Worldwide Emerging Mar
kets Innovation Center (Shanghai) has translated many of the XP
practices to their business of developing personal care products, such
as lotions, creams, shower gels, and soaps:

•	 Small releases: Conduct fast prototypes and test immediately.
They separate the development of fragrances, preservative op-
tions, and base formulas, and then merge them eventually.

•	 Simple design: Remove unnecessary materials in the
formulation.

•	 Test-driven design: For example, when concerned about skin
moisturization, look at how the test is done and design the
product accordingly.

•	 Pairing: Adopt a buddy system. Have two formulators working
on the same project, which helps both in finding better solutions
and in broadening skills.

•	 Collective code ownership: For difficult issues, conduct
group prototyping wherein a pair of buddies shares their
issue with others, whereupon other pairs create solutions
in the lab and forward them to the requesting buddies for
further development.

•	 Continuous integration: As soon as formulators create an innova-
tive product, forward it to others who optimize the formulation.

•	 Customer on the team: Expose fast prototypes to consumers and
get their assessment, then revise, evaluate again, and so forth.

 A Note of Caution

I have mentioned that these tools and techniques must be applied
selectively to some projects and not to others, and they should
be applied only to certain portions of a project. The next section
provides more on this. Some of the tools and approaches, such as
simple design, are exactly the right thing to do in some cases and

absolutely the wrong thing to do in others (see “Providing for
Growth” in Chapter Three, for instance). I point out many of the
potential pitfalls as I go along. I wish I could resolve the essential
ambiguity for you, but this is impossible given the broad variety of
potential applications.
	 This is new material. Tomorrow it will be applied in ways
undreamt of today, and this will lead to clearer rules for when
and how to apply it. You could wait for the material to be pack
aged neatly for you by your competitor, but that is probably an
unattractive option.
	 Consequently, these tools and techniques should be applied by
a seasoned manager who understands the unique objectives and
capabilities of the target organization, as well as its culture and the
demands of its marketplace.

 The Project Analyzer

Flexibility is inappropriate for some projects, nor is it necessarily
appropriate for all parts of a product. The Project Analyzer suggests
where to allow flexibility and where it is necessary to stay closer to
more traditional approaches (See Figure 1.6). It measures a project
in four dimensions: quality management, project planning, docu
mentation, and requirements management. Each of these dimen
sions is independent and is influenced by various project attributes,
as shown in Figure 1.6b.
	 As indicated in Figure 1.6a, a project can rate high on one axis,
necessitating a greater amount of structure and control there. On
the other hand, other dimensions might be relatively light, allow
ing more flexibility on them. For instance, in Figure 1.6a, Project 2
can be managed using a more flexible approach than Project 1—
except in requirements management, where it should be even more
structured than Project 1. Also note that the total “thumbprint”
area of a project indicates the amount of project overhead required,
and the area left over outside the thumbprint represents the resid
ual effort, after overhead, for actual product development.

THE PROJECT ANALYZER 27

28 1 . UNDER STANDING FLEXIBIL ITY
R

eq
ui

re
m

en
ts

m

an
ag

em
en

t

Pr
oj

ec
t

pl
an

ni
ng

Quality management Quality management

Documentation

R
eq

ui
re

m
en

ts

m
an

ag
em

en
t

Pr
oj

ec
t

pl
an

ni
ng

Documentation

Project 1	 Project 2

R
eq

ui
re

m
en

ts

m
an

ag
em

en
t

Pr
oj

ec
t

pl
an

ni
ng

Quality management

Documentation

Potential
business damage

Technology skills

Technology stability

Problem
complexity

Team
dispersion

Team maturity

Business
stability

Business
knowledge

Project
duration

Technology skills

Customer
project

relationship

Project
organization
complexity

Customer
organization
complexity

Project size

(a)

(b)

Figure 1.6 a. The Thumbprints of Two Projects.
 b. Attributes of a Project That Push Its Thumbprint

Along the Indicated Axis

© 2002 Anne Bjerre Jorgensen and Ole Jepsen. Used with permission.

 	 The point of Figure 1.6 (and my motivation for placing the
Project Analyzer so early in the book) is only to alert you that each
project should be viewed separately for areas where flexibility will be
beneficial and where it might be harmful. Each project will have its
own characteristic flexibility thumbprint. In Chapter Nine, I explore
this topic further and provide a means for actually balancing the
needs for flexibility with the needs for structure.
	 Should you decide to use the Project Analyzer as portrayed in
Figure 1.6 for your project, note that it was created for IT software
projects. Although it seems relatively general, please modify it to the
attributes of your project.

 Summary

This chapter provides a foundation for flexible development. Some
key points:

•	 I aim to provide customizable tools, techniques, and approaches
that will help you accommodate—even embrace—change rather
than suppressing or denying it.

•	 Change is essential to innovation, and industry’s record
over a recent fourteen-year period is one of decreasing
product innovation.

•	 Not all projects or parts of a project need be flexible, and it can
be inadvisable to make them all flexible. Use flexibility with
discretion when its benefits outweigh its costs.

•	 Agile software development, Extreme Programming in par
ticular, is a motivating model of the possibilities for increasing
flexibility, but most agile practices do not translate directly to
non-software products. This book develops similar practices for
use outside the software industry.

	 In contrast with this introductory chapter, the ones to follow
present the tools and approaches of flexibility. Think of them as

SUMM ARY 29

30 1 . UNDER STANDING FLEXIBIL ITY

a tool kit. Each chapter presents a category of tools. For a given
project, you will need an assortment of tools but not necessarily all
of them.
	 I present the categories of tools by chapter only because it is
easier to assimilate them separately. Like the practices of XP though,
they fit together and mutually support each other. They tend to be
synergistic (1 + 1 = 3). Some may not seem to fit your business, but
this may only be because you are not thinking creatively enough
about them. For instance, at first, modular product architectures
(Chapter Three) may not seem to apply to homogeneous chemical
products like paint, but they may apply to the manufacturing or
distribution processes of such products to make them more flexible.

