

OTHER BACK MATTER
Notes (which provide detail without interrupting the flow),
Bibliography (which backs up the notes), Customer Council

(which advised us on content), and Index

from

Flexible Product Development
by

Preston G. Smith

Copyright © 2007, 2018 by Preston G. Smith. All rights reserved.

 Notes

Introduction

1.	 Iteration comes from the software development world (see Chapter One). In
the lean manufacturing and lean product development fields, the related
term is small batch size, for which see Reinertsen’s Managing the Design Factory.

 Chapter One

1.	 See the Boston Consulting Group’s Innovation 2006.
2.	 Membership in the Project Management Institute stood at 485,000 with

762,000 credentialed PMPs as of March 2017 and has grown from 237,000 in
2007. See the Project Management Institute’s Member Fact Sheet.

3.	 This is a short discussion of change in modern business. For a longer and
more strategic treatment, See Brown and Eisenhardt’s Competing on the Edge.

4.	 Arthur Fry and Spencer Silver invented the sticky note in 1970, based on
Silver’s 1968 invention of the “low-tack” adhesive involved. It was 1979 before
3M found a means for marketing it successfully. See en.wikipedia.org/wiki/
Spencer_Silver and inventors.about.com/library/inventors/blpostit.htm (both
accessed September 24, 2018).

5.	 See Smith and Reinertsen’s Developing Products in Half the Time.
6.	 For a contemporary treatment, see Cooper, Edgett, and Kleinschmidt’s

Portfolio Management for New Products. For good coverage of the balance
between new and mature products, see Roussel, Saad, and Erickson’s Third
Generation R&D.

7.	 See Boehm’s Software Engineering Economics, p. 40.
8.	 See Boehm and Turner’s Balancing Agility and Discipline, pp. 218–219.
9.	 See Terwiesch, Loch, and De Meyer’s “Exchanging Preliminary Information in

Concurrent Engineering.” They provide detailed cost-of-change information
for three automotive components, and their results support the 10x/phase
rule. However, this is an example of the worst part of the Pareto principle.
They only investigate the two most expensive transitions in the development
process (toolmaking), which together yield a 100x cost increase.

 265

266 NOTES

10.	 See Larman’s Agile and Iterative Development.
11.	 See agilemanifesto.org/principles.html, accessed September 24, 2018.
12.	 This discussion draws from Beck’s Extreme Programming Explained.

Although this book comes in two editions (dated 2000 and 2005), it is
actually more like parts 1 and 2. The first edition lays out the basics, and the
second edition, requiring some existing knowledge of XP, describes it more
broadly, provides case studies, and covers more advanced topics, such as the
roles of project planning and software testing and the scalability of XP to
large teams, dispersed teams, and life-critical applications. Consequently,
this discussion follows the first edition more than the second one. Also see
en.wikipedia.org/wiki/Extreme_Programming (accessed September 24, 2018).

13.	 Although commonly used, the term pair programming is misleading even for
software development, because these pairs not only program but design, test,
integrate, and document. Compare to the shift from concurrent engineering to
concurrent development. Thus I use simply pairing from here on.

14.	 See Boehm and Turner’s Balancing Agility and Discipline, pp. 230–232.
15.	 See Beck’s Extreme Programming Explained (First Edition), pp. 64–70, for

more such relationships..
16.	 en.wikipedia.org/wiki/Extreme_Programming (Origins section) or informit.

com/articles/article.asp?p=20972&rl=1 (both accessed September 24, 2018).
17.	 See Beck’s Extreme Programming Explained (First Edition), pp. 29–34.

The second edition adds respect and suggests that others, such as safety,
predictability, and quality of life, may be important in certain situations.

18.	 See Boehm and Turner’s Balancing Agility and Discipline, p. 231.
19.	 See Eckstein’s Agile Software Development in the Large.

 Chapter Two

1.	 I use specification and requirement interchangeably to mean the written
description of the product going into development, but I know that some
people make a clear distinction here. Some say that requirements are the
wish list at the beginning of the project, while specifications appear in
the catalog after commercialization. Others believe that requirements are
for your product, and specifications relate to purchased components or
materials. Please picture the term you prefer for the up-front description of
what the product should be.

2.	 Basic data are from Thomke and Reinertsen’s “Agile Product Development,”
updated via personal communication with Donald Reinertsen, December 11,
2006.

3.	 See MacCormack’s “Developing Products on ‘Internet Time’: The Anatomy
of a Flexible Development Process,” “How Internet Companies Build
Software,” and “Creating a Fast and Flexible Process: Empirical Research
Suggests Keys to Success.”

NOTES 267

4.	 See Boehm’s “Prototyping Versus Specifying: A Multiproject Experiment” for
details.

5.	 Source: The Standish Group, standishgroup.com, as reported at the 3rd
International Conference on Extreme Programming and Agile Processes in
Software Engineering (XP 2002), Alghero, Sardinia, Italy, May 2002.

6.	 Lynn and Reilly’s Blockbusters lists a clear and stable product vision as one
of five factors that distinguished what they call “blockbuster” products from
others in a ten-year study of seven hundred development projects. For more
examples of vision statements and how to create them, see their book.

7.	 From Jeffrey K. Liker, The Toyota Way, McGraw-Hill, 2004 (Figure 5-4).
Reproduced with permission of The McGraw-Hill Companies.

8.	 See Morgan and Liker’s Toyota Product Development System, p. 123.
9.	 See Morgan and Liker’s Toyota Product Development System, p. 260. Also,

private communication with the authors, November 6, 2006.
10.	 See Sobek’s “Principles That Shape Product Development Systems,” p. 226.
11.	 Cooper’s The Inmates Are Running the Asylum describes this technique.
12.	 For more on this topic, see Cockburn’s Writing Effective Use Cases.
13.	 For more on this topic, see Cohn’s User Stories Applied.
14.	 You can often drive user stories to a higher, more change-resistant level by

writing “epics,” as Cohn describes.
15.	 See Hohmann’s Innovation Games.
16.	 Customers (those who pay for your products) are not necessarily users (those

who use them). For consumer products, the two are often the same, but for
industrial products, they are usually different: a buyer or a manager may
purchase the computer on your desk at work, but you have to use it and
cope with it every day. I use the terms interchangeably, but please apply
the pertinent one.

17.	 Sometimes Marketing and Sales personnel are nervous about letting
engineers talk to customers, fearing that they might say something
inappropriate. If so, train those involved using Hohmann’s guidance
described in Beyond Software Architecture, p. 60.

18.	 See Scoble and Israel’s Naked Conversations for much more on business
blogging.

19.	 In Hohmann’s Innovation Games.
20.	 Both Toyota examples are from Morgan and Liker’s Toyota Product

Development System, p. 30.
21.	 For example, see Mariampolski’s Ethnography for Marketers, and Perry and

her colleagues’ “Creating the Customer Connection.”
22.	 For more on lead users, see von Hippel’s Sources of Innovation, and for other

examples and the 3M infection study, see his “Creating Breakthroughs at
3M.”

23.	 See Christensen’s The Innovator’s Dilemma.
24.	 See Highsmith’s Agile Project Management, p. 13.

268 NOTES

Chapter Three

1.	 From Stevens, Myers, and Constantine, “Structured Design,” p. 117.
Quotation attributed to Constantine, who is considered the originator of
the structured design technique used in software development and was the
teacher of Stevens and Myers.

2.	 Adapted from The PDMA Glossary for New Product Development. See pdma.
org/page/glossary_access2#P (accessed September 24, 2018).

3.	 For more on platforms and platform architecture, see Meyer and Lehnerd’s
Power of Product Platforms or Feitzinger and Lee’s “Mass Customization at
Hewlett-Packard: The Power of Postponement.”

4.	 This shift between integral and modular architectures may appear to
contradict Christensen and Raynor’s observations in The Innovator’s Solution
(pp. 127–137). These authors work at the level of industries and describe
how, in the early stages of an innovation (when I suggest that the need for
flexibility and thus modularity is greatest), the product’s performance falls
below customer desires, so designers squeeze performance from the design.
(integral architecture). Later, as the technology improves, performance
exceeds needs and customers are unwilling to pay extra for performance, so
the industry shifts to a modular architecture that allows more flexibility
in tuning the product to individual needs at minimal cost. Observe that
this strategic modularity aims more at changes during manufacture and
distribution, that is, it is more of a platform architecture approach. In the
early stages of an innovation, there is still a great need for designers to isolate
areas of uncertainty and provide for reserve performance where needs are
likely to grow, so wise designers apply modularity selectively at the design
level, especially in the early stages of an innovation. This illustrates why
flexibility techniques must be applied selectively so that performance will
not suffer excessively just when Christensen and Raynor advise that it is
most important.

5.	 Quotation from ferrariusa.com/design_f430text.php, accessed April 23, 2007.

6.	 These techniques are old. David Parnas provided an elegant (but technical)
description of them for software nearly three decades ago. See Parnas’
“Designing Software for Ease of Extension and Contraction.”

7.	 Here I follow Ulrich and Eppinger’s Product Design and Development.

8.	 For more on considering interfaces as design rules, see Baldwin and Clark’s
Design Rules.

9.	 A similar example is the naming of Windows XP covered earlier in this chapter.

10.	 See Thomke’s “Role of Flexibility in the Development of New Products” for
further discussion.

NOTES 269

 Chapter Four

1.	 Sources, respectively: Thomke’s Experimentation Matters, p. 6; nmlites.org/
standards/science/glossary_2.htm; and www. math.tamu.edu/FiniteMath/
FinalBuild/Fall2001/Module9/ Introduction0.html.

2.	 Source: Archibald Lemon Cochrane. See his Effectiveness and Efficiency, p. 43.

3.	 See Thomke’s Experimentation Matters, pp. 211–214.

4.	 For an extensive discussion of exploration and hypothesis-based
experimentation, see Garvin’s Learning in Action, chapter 5 (specifically what
he calls the probe-and-learn process).

5.	 See Iansiti and MacCormack’s “Developing Products on Internet Time.”

6.	 The Orion case study was published by Z Corporation in 2001 but is no
longer available.

7.	 See Thomke’s “Capturing the Real Value of Innovation Tools.”

8.	 See Smith and Reinertsen’s Developing Products in Half the Time, chapter 2.

9.	 See, for example, Montgomery’s Design and Analysis of Experiments.

10.	 The lock analogy was inspired by Thomke’s Experimentation Matters, p. 110.
For more on parallel versus sequential strategies, see Thomke and Bell’s
“Sequential Testing in Product Development.”

11.	 Testing in its broadest sense includes testing an idea, a prototype, or even
a hunch. Here I consider the narrower interpretation of testing a design, a
product, or a part of a product.

12.	 See Peters and Austin’s Passion for Excellence, p. 130. My second engineering
job was for a manufacturer of aircraft engines twenty-plus years before
their book appeared. At that time the test used a two-pound seagull, but the
procedure was the same. This was regarded as the final test of an engine.

Chapter Five

1.	 Yogi Berra was a famous American baseball player from several decades ago,
but today he is known better for his illogical but direct manner of speaking.

2.	 Engineering changes do not constitute flexibility. Engineering changes
originate internal to engineering and in most cases arise from poor
engineering judgment. Flexibility stems from changes external to
engineering. Thus flexibility is beneficial when external change is likely, but
engineering changes are usually an indication of mistakes.

3.	 See Ward, Liker, Cristiano, and Sobek’s “Second Toyota Paradox.” This
article is also the source of the concept for Figure 5.4.

4.	 See Pugh’s Total Design, section 4.8.

270 NOTES

7.	 For additional details, see Morgan and Liker’s Toyota Product Development
System, pp. 269–274. For examples of A3 reports, guidance on writing them,
and templates for writing the basic types, search the Web for “A3 report.”

8.	 See Sobek, Ward, and Liker’s “Toyota’s Principles of Set-Based Concurrent
Engineering.”

9.	 The examples in this and the following few paragraphs come from Durward
Sobek’s Ph.D. dissertation.

10.	 Suggested by Katherine Radeka of Whittier Consulting Group.
11.	 See Ward, Liker, Cristiano, and Sobek’s “Second Toyota Paradox.”

Chapter Six

1.	 From Turner and Boehm’s “People Factors in Software Management.”
2.	 The book is Boehm and Turner’s Balancing Agility and Discipline.
3.	 See Boehm’s Software Engineering Economics.
4.	 See Quinn’s Building the Bridge As You Walk On It. However, only the title of

this book is pertinent here, as the book deals with personal change rather
than project change.

5.	 See MacCormack’s “How Internet Companies Build Software” for more on
experience.

6.	 See Loch, DeMeyer, and Pich’s Managing the Unknown, p. 41.
7.	 See Cockburn’s Agile Software Development, pp. 14–18, and Boehm and Turner’s

Balancing Agility and Discipline, p. 48.
8.	 This has no connection with Douglas McGregor’s Theory X, which

postulates managers who regard workers as lazy and unwilling to work
without strong structure and control.

9.	 This figure results from a multi-year study in a major electronics company
that categorized engineers’ activities as either adding or not adding value to
their development projects.

10.	 In a 2006 article of the same name, Scott Ambler uses the term generalizing
specialists and discusses both their benefits to the team and the techniques for
cultivating them.

11.	 See agilemanifesto.org/principles.html, accessed September 24, 2018.
12.	 See Figure 8-7 (p. 156) of Smith and Reinertsen’s Developing Products in Half

the Time.
13.	 Many people call this a “virtual team,” but I dislike this term. Teams exist

to enhance performance, and it clouds the performance issue to use a term
that means “being such in essence or effect though not formally recognized
or admitted” (webster.com, accessed September 24, 2018). Are the members
virtual, are the activities virtual, or what is it that exists only in essence or
effect?

NOTES 271

7.	 See Allen’s Managing the Flow of Technology. His more contemporary
Organization and Architecture of Innovation (pp. 58–61) reinforces his earlier work
and concludes that electronic communication media, such as e-mail, lack the
fidelity to substitute for face-to-face communication as distance increases.

8.	 As suggested at the beginning of this section, because effectiveness drops
off gradually, various distances are used to define co-location. Reinertsen is
somewhat more liberal in his definition than I am. Stephanie Teasley and her
colleagues (quoted a few paragraphs later) are still more liberal.

9.	 The Olsons’ article appeared in Human-Computer Interaction in 2000.
10.	 This work was published by Teasley, Covi, Krishnan, and Olson as “How Does

Radical Collocation Help a Team Succeed?” Both of the quotations that follow
this paragraph are reprinted with permission from that article, copyright
ACM.

11.	 See Cockburn’s Agile Software Development, pp. 84–88.
12.	 See Williams and Kessler’s Pair Programming Illuminated.
13.	 From Duarte and Snyder’s Mastering Virtual Teams. Used with permission.
14.	 See Duarte and Snyder’s Mastering Virtual Teams, p. 42.

Chapter Seven
1.	 Quoted in Maier and Rechtin’s Art of Systems Architecting, p. 272. Robert

Spinrad is a retired vice president of technology strategy and director of the
legendary PARC laboratories at Xerox. He is also a member of the prestigious
National Academy of Engineering in the United States.

2.	 For example, see Deck’s “Decision Making: The Overlooked Competency in
Product Development.”

3.	 “The last responsible moment” was coined in about 2000 by the Lean
Construction Institute in work they were doing with the British Airports
Authority to create the construction process for Terminal 5 at London’s
Heathrow Airport. They needed flexibility because the airlines’ strategic plans
were likely to change numerous times during the eight years needed to build
the terminal. In Lean Software Development, Poppendieck and Poppendieck
brought the term into agile software development, and I elaborate further.

4.	 In developing this section, I consulted some experts on building consensus. Each
had a somewhat different way of using the consensus gradient. Consequently,
what you see here is truly a consensus version of the topic, keeping the elements
separate so that you can assemble them to suit your needs.

5.	 For this section, I am indebted to chapter 6 of Savage’s excellent book, Decision
Making with Insight. This chapter introduces decision trees and provides
XLTree, an Excel add-in, for creating them. All decision trees in this chapter
were created using XLTree. Unfortunately, XLTree isn’t compatible with
contemporary operating systems (Windows 10, for example), but plenty of
other such tools are available.

272 NOTES

7.	 For an introduction to utility theory and utility measures, see Savage’s Decision
Making with Insight, pp. 194–195.

8.	 For an example of real options applied to the product development process, see
Huchzermeier and Loch’s “Project Management Under Risk.”

9.	 For a starter on real options applied to new product development, see
Faulkner’s “Applying ‘Options Thinking’ to R&D Valuation,” Angelis’
“Capturing the Option Value of R&D,” and van Putten’s “Making Real Options
Really Work.” Several other helpful articles are available in Research-Technology
Management and the Harvard Business Review.

10.	 Traditionally, such valuations are made using discounted cash flow (DCF)
methods, which assume the project will be completed according to the
original plan. Even when used with a phased development process,
where the purpose of the phases is that one can kill the project rather
than continuing to invest, the project is still evaluated on the assumption of
completing the plan. In contrast, the real options approach allows a project
to be evaluated more flexibly by making future investments contingent on
interim results.

11.	 For a discussion of how real options are equivalent to decision trees, see
Faulkner’s “Applying ‘Options Thinking’ to R&D Valuation.”

Chapter Eight

1.	 The referenced guide is the Project Management Institute’s Guide to the Project
Management Body of Knowledge.

2.	 Several other books on agile project management have appeared in the last few
years. I list DeCarlo’s and Highsmith’s because they generalize beyond software
development better than most of the others, I believe. Interestingly, an Agile
Practice Guide, jointly published by PMI and the Agile Alliance, appeared in
2017, apparently because agile had become such an important topic in PMI that
it could no longer be ignored. This guide covers a few agile practices, such as
stand-up meetings (Chapter Six in this book) and retrospectives (Chapter Eight),
but it doesn’t mention core topics, such as customer involvement (Chapter Two),
experimentation (Chapter Four), or decision making (Chapter Seven).

3.	 Chapter Nine shows how to combine structured and flexible development
processes in the same project, depending on the project’s specific demands.
You can use the same approach to adjust project management to the specific
characteristics of a project.

4.	 See the Project Management Institute’s Guide to the Project Management Body of
Knowledge, p. 356.

5.	 See Portny’s Project Management for Dummies (Second Edition), p. 14.
6.	 See the Project Management Institute’s Guide to the Project Management Body of

Knowledge, p. 369.
7.	 Chapter Nine covers anticipation relative to adaptation, which is investing in the

capability to react quickly when anticipation is not possible or cost-effective.

NOTES 273

8.	 See Figure 9.4 for an illustration of the way a project naturally shifts from
anticipation to planning as it progresses.

9.	 For additional information on this method, see Githens’s “Using a Rolling
Wave for Fast and Flexible Development.”

10.	 For more detail on agile loose-tight planning, see Cohn’s Agile Estimating and
Planning.

11.	 See Thomke’s Experimentation Matters, pp. 168–169.
12.	 See Highsmith’s Agile Project Management, p. 42.
13.	 Smith and Merritt’s Proactive Risk Management is a good example of this

literature.
14.	 Although most agilists have replaced waterfall (phased) processes with

iterative ones, Jim Highsmith has created a means of combining a phased
governance process (for managing project investments) with iterative
development (for flexibility). See his “Agile for the Enterprise: From Agile
Teams to Agile Organizations.”

15.	 See Loch, DeMeyer, and Pich’s Managing the Unknown. Although valuable,
this book is unfortunately also expensive. However, you can read a lengthy
review of it gratis at https://www.strategy2market.com/Preston-Smith/
Book-Reviews/Managing-the-Unknown/ (accessed September 25, 2018).

16.	 See Weick and Sutcliffe’s Managing the Unexpected.
17.	 Summarized with permission from Weick and Sutcliffe’s Managing the

Unexpected, pp. 10–17.
18.	 This metric was inspired by Iansiti’s “Shooting the Rapids,” Figure 1.
19.	 I intentionally use feel here, but I recognize that some people are quite

uneasy in expressing their feelings or hearing about others’ feelings. In this
case, please see Derby and Larsen’s Agile Retrospectives (p. 10) for ways of
obtaining this information without using that f word directly.

20.	 See Morgan and Liker’s Toyota Product Development System, p. 211.

Chapter Nine
1.	 See Boehm and Turner’s Balancing Agility and Discipline, pp. 36–37 and p.

152.
2.	 See note 14 in Chapter Eight.
3.	 See Cockburn’s “Learning from Agile Software Development.”
4.	 For a description of how IT might be used to capture and manage product

development knowledge, see McGrath’s Next Generation Product Development.
5.	 For more on how Toyota manages tacit knowledge, see Morgan and Liker’s

Toyota Product Development System, pp. 204–205, 229, and 279–280. I describe
A3 reports and engineering checklists in Chapter Five.

6.	 As discussed in the Introduction, using structured as the opposite of flexible
has difficulties in that flexible development is very structured in certain

274 NOTES

subtle ways. Agilists speak of high- and low-ceremony processes. Nevertheless,
traditional (used in the rest of the book) seems to miss the mark when discussing
process, so I will proceed with structured here, knowing that it is not a perfect
antonym.

7.	 See Boehm and Turner’s Balancing Agility and Discipline, chapter 5. For non-
software projects, their approach must be modified in two ways. One is to shift
it to a physical product, and the other is to narrow it to a focus on flexibility
(Boehm and Turner consider other differences between agile and traditional
approaches, such as scalability). Also, I do not follow their complete five-step
process. For an alternative means of adjusting the process used to the needs of
a specific project, also see the Project Analyzer discussed at the end of Chapter
One.

8.	 The infrared measurement technologies and algorithms described here are
fictitious.

9.	 Goldratt and Cox’s The Goal (a business novel) is the classic on this topic, but
more descriptive material can be found on the Web, for instance, en.wikipedia.
org/wiki/Theory_of_Constraints (accessed September 25, 2018).

10.	 For bulk arrivals, there is no formula for the answer, so I used the Extend
discrete-event simulation package from Imagine That, Inc. and covered in
Savage’s Decision Making with Insight. I assumed that arrivals appear in uniformly
distributed clumps of one to five items (mean of three), as well as being exponen
tially distributed in time. Extend generated Figure 9.7 too.

11.	 From “What Testers Can Do About Technical Debt” by Johanna Rothman,
https://www.cmcrossroads.com/article/what-testers-can-do-about-technical-
debt-part-1 and https://www.cmcrossroads.com/article/what-testers-can-do-
about-technical-debt-part-2, accessed September 25, 2018.

Chapter Ten

1.	 Brooks managed development of the OS/360 software system. The quote
comes from his Mythical Man-Month, p. 242. “System” to him means software or
hardware.

2.	 From Kotter and Cohen’s Heart of Change, p. 40.
3.	 For more on pilot projects, see Smith and Reinertsen’s Developing Products in Half

the Time, chapter 15.
4.	 From Bridges’ Managing Transitions, p. 37.
5.	 From Kotter and Cohen’s Heart of Change, p. 2.
6.	 From Patterson’s Leading Product Innovation, pp. 262–264.
7.	 See Schaffer’s Breakthrough Strategy for more on this momentum-building process.
8.	 From Morgan and Liker’s Toyota Product Development System, p. 227.
9.	 For more on patterns, see en.wikipedia.org/wiki/Software_ pattern, accessed

September 25, 2018.
10.	 From Manns and Rising’s Fearless Change, p. 5.

Chapter Eleven

1.	 This method of managing changes is strongly connected with the tech-
nique used to manage risk in a project. In fact, changes are just a subset
of the risks in a project. A strong body of knowledge is available in the
field of project risk management field. I have written a book on this sub-
ject that parallels the technique described in this chapter, and The Proj-
ect Management Institute has published many books about project risk
management, including their PMBOK Guide. If you search the Internet
for help on the subject, be sure to search for project risk management; risk
management alone will bring you information mostly about the insurance
industry. But please remember that none of this substitutes for building
an environment that accommodates change.

2.	 Note 1 mentions that managing anticipated changes is quite like project
risk management. Those managing project risks may not have a tem-
plate like Figure 11.1, but they follow the same steps. The big difference is
that they do not have a Benefits box. Although they sometimes mention
benefits (called opportunities in project risk management), very seldom
do benefits actually occur. Anticipated changes, in contrast, can have
substantial benefits, sometimes outweighing the costs.

3.	 Although this book is written in U.S. English, it is international in scope.
Thus, I use a variety of currencies. U.S. dollars, euros, and Japanese yen
have already been used, so the examples in this chapter employ the Chi-
nese yuan or RMB (which translates into “people’s money” in Chinese).

4.	 This value was obtained by using the cost of delay calculation described
in chapter 2 of Smith and Reinertsen.

5.	 See chapter 2 of Smith and Reinertsen for a detailed explanation.
6.	 Although this may look complicated, it is actually a relatively simple

model. It allows for only one benefit and one cost item per anticipated
change. If you have more than one benefit or multiple costs associated
with a single change, you can handle this by placing an i subscript on
pertinent quantities below and summing over i, where i runs from 1 to
the number of benefits or costs involved.

7.	 Chosen because it is the only change of the three to have both a benefit
and a cost.

8.	 There are often multiple benefits or costs for a given change. Usually,
some simple analysis will show that one benefit and one cost are domi-
nant, and you can proceed with them alone. If one doesn’t stand out, see
note 6 above.

9.	 See the section entitled Tacit Knowledge in Chapter Nine.
10.	 Readers outside North America may need an explanation. Canada has

a national health care system, which the United States lacks, so drug
prices are regulated at much lower levels (for the same drugs) in Canada.
Consequently, Canadian pharmacies have a huge market serving U.S.
customers online. But drug companies and the regulatory authority (the
Food and Drug Administration) in the United States oppose this, as it
undercuts their power and authority. This creates volatile conditions as
the various opposing parties act constantly to enhance their positions.

NOTES 275

 Bibliography

Allen, Thomas J. Managing the Flow of Technology. Cambridge, MA: MIT Press,
1977.

Allen, Thomas J., and Gunter W. Herr. The Organization and Architecture of
Innovation: Managing the Flow of Technology. Amsterdam: Butterworth
Heinemann, 2007.

Ambler, Scott W. “Generalizing Specialists: Improving Your IT Career Skills,”
2006. http://agilemodeling.com/essays/generalizingSpecialists.htm.

Angelis, Diana I. “Capturing the Option Value of R&D.” Research-Technology
Management 43(4): 31–34 (July–August 2000).

Avery, Christopher M. Teamwork Is an Individual Skill: Getting Your Work Done
When Sharing Responsibility. San Francisco: Berrett-Koehler, 2001.

Baldwin, Carliss Y., and Kim B. Clark. Design Rules: The Power of Modularity.
Cambridge, MA: MIT Press, 2000.

Beck, Kent. Extreme Programming Explained: Embrace Change. Boston: Addison-
Wesley, 2000.

Beck, Kent, and Cynthia Andres. Extreme Programming Explained: Embrace
Change. (Second Edition). Boston: Addison-Wesley, 2005.

Boehm, Barry W. Software Engineering Economics. Upper Saddle River, NJ:
Prentice Hall, 1981.

Boehm, Barry W., Terance E. Gray, and Thomas Seewaldt. “Prototyping Versus
Specifying: A Multiproject Experiment.” IEEE Transactions on Software
Engineering SE-10(3): 290–302 (May 1984).

Boehm, Barry W., Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K.
Clark, Bert Steece, A. Winsor Brown, Sunita Chulani, and Chris
Abts. Software Cost Estimation with COCOMO II. Upper Saddle River,
NJ: Prentice Hall, 2000.

Boehm, Barry, and Richard Turner. Balancing Agility and Discipline: A Guide for
the Perplexed. Boston: Addison-Wesley, 2004.

Boston Consulting Group. Innovation 2006. Boston: Boston Consulting Group,
Inc., 2006.

277

278 BIBLIOGRAPHY

 Bridges, William, Managing Transitions: Making the Most of Change (Second
Edition). Cambridge, MA: Da Capo Press, 2003.

 Brooks, Frederick P., Jr., The Mythical Man-Month: Essays on Software Engineering,
20th Anniversary Edition. Reading, MA: Addison-Wesley, 1995.

 Brown, Shona L, and Kathleen M. Eisenhardt. Competing on the Edge: Strategy
as Structured Chaos. Boston: Harvard Business School Press, 1998.

 Christensen, Clayton M. The Innovator’s Dilemma: When New Technologies Cause
Great Firms to Fail. Boston: Harvard Business School Press, 1997.

 Christensen, Clayton M., and Michael E. Raynor. The Innovator’s Solution:
Creating and Sustaining Successful Growth. Boston: Harvard Business
School Press, 2003.

 Cochrane, Archibald Lemon. Effectiveness and Efficiency: Random Reflections on
Health Services. London: Nuffield Provincial Hospitals Trust, 1972.

 Cockburn, Alistair. Writing Effective Use Cases. Boston: Addison-Wesley, 2000.
 Cockburn, Alistair. Agile Software Development. Boston: Addison-Wesley, 2002.
 Cockburn, Alistair. “Learning from Agile Software Development—Part One.”

Crosstalk: The Journal of Defense Software Engineering 15(10): 10–14
(October 2002).

 Cohn, Mike. User Stories Applied: For Agile Software Development. Boston:
Addison-Wesley, 2004.

 Cohn, Mike. Agile Estimating and Planning. Upper Saddle River, NJ: Prentice
Hall, 2006.

 Cooper, Alan. The Inmates Are Running the Asylum: Why High-Tech Products
Drive Us Crazy and How to Restore the Sanity. Indianapolis: SAMS, 1999.

 Cooper, Robert G. “Your NPD Portfolio May Be Harmful to Your Business’s
Health,” Visions 29(2): 22–26 (April 2005).

 Cooper, Robert G., Scott J. Edgett, and Elko J. Kleinschmidt. Portfolio Man-
agement for New Products, (Second Edition). Cambridge, MA: Perseus
Books, 2001.

 DeCarlo, Doug. eXtreme Project Management: Using Leadership, Principles, and Tools
to Deliver Value in the Face of Reality. San Francisco: Jossey-Bass, 2004.

 Deck, Mark J. “Decision Making: The Overlooked Competency in Product
Development.” In The PDMA ToolBook 1 for New Product Development, Paul
Belliveau, Abbie Griffin, and Stephen Somermeyer, eds.
New York: Wiley, 2002, pp. 165–185.

 Derby, Esther, and Diana Larsen. Agile Retrospectives: Making Good Teams Great.
Raleigh, NC: Pragmatic Bookshelf, 2006.

 Duarte, Deborah L., and Nancy Tennant Snyder. Mastering Virtual Teams:
Strategies, Tools, and Techniques That Succeed (Third Edition).
San Francisco: Jossey-Bass, 2006.

BIBLIOGR APHY 279

 Eckstein, Jutta. Agile Software Development in the Large: Diving into the Deep.
New York: Dorset House, 2004.

 Faulkner, Terrence W. “Applying ‘Options Thinking’ to R&D Valuation.”
Research-Technology Management 39(3): 50–56 (May–June 1996).

 Feitzinger, Edward, and Hau L. Lee. “Mass Customization at Hewlett-Packard:
The Power of Postponement.” Harvard Business Review 75(1): 116–121
(January-February 1997).

 Garvin, David A. Learning in Action: A Guide to Putting the Learning Organization
to Work. Boston: Harvard Business School Press, 2000.

 Githens, Gregory D. “Using a Rolling Wave for Fast and Flexible Development.”
In The PDMA ToolBook 3 for New Product Development, Abbie
Griffin and Stephen Somermeyer, eds. 397–415. Hoboken, NJ: Wiley,
2007.

 Goldratt, Eliyahu M., and Jeff Cox, The Goal (Third Edition). Great Barrington,
MA: North River Press, 2004.

 Highsmith, Jim. Agile Project Management: Creating Innovative Products. Boston:
Addison-Wesley, 2004.

 Highsmith, Jim. “Agile for the Enterprise: From Agile Teams to Agile Organi
zations.” Cutter Consortium Agile Project Management Advisory Service
Executive Report 6(1) (2005).

 Hohmann, Luke. Beyond Software Architecture: Creating and Sustaining Winning
Solutions. Boston: Addison-Wesley, 2003.

 Hohmann, Luke. Innovation Games: Creating Breakthrough Products Through
Collaborative Play. Upper Saddle River, NJ: Addison-Wesley, 2007.

 Huchzermeier, Arnd, and Christoph H. Loch. “Project Management Under
Risk: Using the Real Options Approach to Evaluate Flexibility in
R&D.” Management Science 47(1): 85–101 (January 2001).

 Iansiti, Marco. “Shooting the Rapids: Managing Product Development in
Turbulent Environments.” California Management Review 38(1): 37–58
(Fall 1995).

 Iansiti, Marco, and Alan MacCormack. “Developing Products on Internet Time.”
Harvard Business Review 75(5): 108–117 (September-October 1997).

 Kerth, Norman L. Project Retrospectives: A Handbook for Team Reviews.
New York: Dorset House, 2001.

 Kotter, John P., and Dan S. Cohen. The Heart of Change: Real-Life Stories of How
People Change Their Organizations. Boston: Harvard Business School
Press, 2002.

 Larman, Craig. Agile and Iterative Development: A Manager’s Guide. Boston:
Addison-Wesley, 2004.

 Loch, Christoph, Arnoud DeMeyer, and Michael T. Pich. Managing the
Unknown: A New Approach to Managing High Uncertainty and Risk in
Projects. Hoboken, NJ: Wiley, 2006.

 Lynn, Gary S., and Richard R. Reilly. Blockbusters: The Five Keys to Developing
Great New Products. New York: Harper Business, 2002.

280 BIBLIOGRAPHY

 MacCormack, Alan. “How Internet Companies Build Software.” Sloan Manage-
ment Review 42(2): 75–84 (Winter 2001).

 MacCormack, Alan. “Creating a Fast and Flexible Process: Empirical Research
Suggests Keys to Success.” Product Development Best Practices Report
10(8): 1–4 (August 2003).

 MacCormack, Alan, Roberto Verganti, and Marco Iansiti. “Developing Prod-
ucts on ‘Internet Time’: The Anatomy of a Flexible Development
Process.” Management Science 47(1): 133–150 (January 2001).

 Maier, Mark W., and Eberhardt Rechtin. The Art of Systems Architecting (Second
Edition). Boca Raton, FL: CRC Press, 2002.

 Manns, Mary Lynn, and Linda Rising. Fearless Change: Patterns for Introducing
New Ideas. Boston: Addison-Wesley, 2005.

 Mariampolski, Hy. Ethnography for Marketers: A Guide to Consumer Immersion.
Thousand Oaks, CA: Sage, 2006.

 McGrath, Michael E. Next Generation Product Development: How to Increase
Productivity, Cut Costs, and Reduce Cycle Times. New York: McGraw-Hill,
2004.

 Meyer, Marc H., and Alvin P. Lehnerd. The Power of Product Platforms: Building
Value and Cost Leadership. New York: Free Press, 1997.

 Montgomery, Douglas C. Design and Analysis of Experiments. Hoboken, NJ:
Wiley, 2005.

 Morgan, James M., and Jeffrey K. Liker. The Toyota Product Development System:
Integrating People, Process, and Technology. New York: Productivity
Press, 2006.

 Olson, Gary M., and Judith S. Olson. “Distance Matters.” Human-Computer
Interaction 15(2–3): 139–178 (2000).

 Parnas, David L. “Designing Software for Ease of Extension and Contraction.” IEEE
Transactions on Software Engineering SE-5(2): 128 –138 (March 1979).

 Patterson, Marvin L. Leading Product Innovation: Accelerating Growth in a
Product-Based Business. New York: Wiley, 1999.

 Perry, Barbara, Cara L. Woodland, and Christopher W. Miller. “ Creating the
Customer Connection: Anthropological/Ethnographic Needs Dis
covery.” In The PDMA ToolBook 2 for New Product Development, Paul
Belliveau, Abbie Griffin, and Stephen M. Somermeyer, eds. 201–234.
Hoboken, NJ: Wiley, 2004.

 Peters, Tom, and Nancy Austin. A Passion for Excellence. New York: Random
House, 1985.

 Poppendieck, Mary, and Tom Poppendieck. Lean Software Development: An
Agile Toolkit. Boston: Addison-Wesley, 2003.

 Portny, Stanley E. Project Management for Dummies (Second Edition). Indianapolis,
IN: Wiley, 2007.

 Project Management Institute. A Guide to the Project Management Body of
Knowledge (Third Edition). Newtown Square, PA: Project Management
Institute, 2004.

BIBLIOGR APHY 281

 Project Management Institute. Agile Practice Guide. Newtown Square, PA:
Project Management Institute, 2017.

 Project Management Institute. Member Fact Sheet. Available online (search on
“PMI Fact File”). Accessed September 26, 2018.

 Pugh, Stuart. Total Design. Wokingham, UK: Addison-Wesley, 1991.
 Quinn, Robert E. Building the Bridge As You Walk On It: A Guide for Leading

Change. San Francisco: Jossey-Bass, 2004.
 Reinertsen, Donald G. Managing the Design Factory: A Product Developer’s

Toolkit. New York: Free Press, 1997.
 Roussel, Philip A., Kamal N. Saad, and Tamara J. Erickson. Third Generation

R&D: Managing the Link to Corporate Strategy. Boston: Harvard Business
School Press, 1991.

 Savage, Sam L. Decision Making with Insight. Belmont, CA: Brooks/Cole, 2003.
 Schaffer, Robert H. The Breakthrough Strategy: Using Short-Term Success to Build

the High-Performance Organization. Cambridge, MA: Ballinger, 1988.
 Scoble, Robert, and Shel Israel. Naked Conversations: How Blogs Are Changing

the Way Businesses Talk with Customers. Hoboken, NJ: Wiley, 2006.
 Smith, Preston G., and Guy M. Merritt. Proactive Risk Management: Controlling

Uncertainty in Product Development. New York: Productivity Press, 2002.
 Smith, Preston G., and Donald G. Reinertsen. Developing Products in Half the

Time (Second Edition). New York: Wiley, 1998.
 Sobek, II, Durward Kenneth. “Principles That Shape Product Development

Systems: A Toyota-Chrysler Comparison.” Ph.D. dissertation,
University of Michigan, 1997.

 Sobek, II, Durward K., Allen C. Ward, and Jeffrey K. Liker. “Toyota’s Principles
of Set-Based Concurrent Engineering.” Sloan Management Review
40(2): 67–83 (Winter 1999).

 Stevens, Wayne G., Glen J. Myers, and Larry L. Constantine, “Structured
Design,” IBM Systems Journal 13(2): 115–139 (May 1974).

 Teasley, Stephanie, Lisa Covi, M. S. Krishnan, and Judith S. Olson. “How Does
Radical Collocation Help a Team Succeed?” Proceedings of the 2000
ACM Conference on Computer Supported Cooperative Work, Phila
delphia, pp. 339–346, 2000.

 Terwiesch, Christian, Christoph H. Loch, and Arnoud De Meyer. “Exchanging
Preliminary Information in Concurrent Engineering: Alternative
Coordination Strategies.” Organization Science 13(4): 402–419 (July/
August 2002).

 Thomke, Stefan H. “The Role of Flexibility in the Development of New Products:
An Empirical Study.” Research Policy 26(1): 105–119 (March 1997).

 Thomke, Stefan H. Experimentation Matters: Unlocking the Potential of New Tech-
nologies for Innovation. Boston: Harvard Business School Press, 2003.

 Thomke, Stefan H. “Capturing the Real Value of Innovation Tools.” Sloan
Management Review 47(2): 24–32 (Winter 2006).

282 BIBLIOGR APHY

 Thomke, Stefan, and David E. Bell. “Sequential Testing in Product Development.” 	
	 Management Science 47(2): 308–323 (February 2001).
 Thomke, Stefan, and Donald Reinertsen. “Agile Product Development: 		
	 Managing Development Flexibility in Uncertain Environments.” 	
	 California Management Review 41(1): 8–30 (Fall 1998).
 Turner, Richard, and Barry Boehm. “People Factors in Software Management:

Lessons from Comparing Agile and Plan-Driven Methods.” Crosstalk:
The Journal of Defense Software Engineering 16(12): 4–8 (December 2003).

 Ulrich, Karl T., and Steven D. Eppinger. Product Design and Development (Third
Edition). New York: McGraw-Hill, 2003.

 van Putten, Alexander B., and Ian C. Macmillan. “Making Real Options Really
Work.” Harvard Business Review 82(12): 134–141 (December 2004).

 von Hippel, Eric. The Sources of Innovation. New York: Oxford University
Press, 1988.

 von Hippel, Eric, Stefan Thomke, and Mary Sonnack. “Creating Breakthroughs
at 3M.” Harvard Business Review 77(5): 47–57 (September–October 1999).

 Ward, Allen, Jeffrey K. Liker, John J. Cristiano, and Durward K. Sobek II. “The
Second Toyota Paradox: How Delaying Decisions Can Make Better
Cars Faster.” Sloan Management Review 36(3): 43–61 (Spring 1995).

 Weick, Karl E., and Kathleen M. Sutcliffe. Managing the Unexpected.
San Francisco: Jossey-Bass, 2001.

 Wheelwright, Steven C., and Kim B. Clark. Revolutionizing Product Development:
Quantum Leaps in Speed, Efficiency, and Quality. New York: Free
Press, 1992.

 Williams, Laurie, and Robert Kessler. Pair Programming Illuminated. Boston:
Addison-Wesley, 2003.

283

 Customer Council

Many people have contributed generously to this book, for which
I am most grateful. Without them, the book would not have been
possible. However, I would like to acknowledge in particular a
“customer council” of lead users of flexibility techniques, the people
who have played a key role in reviewing chapters, suggesting
improvements, offering examples, and providing sources of
associated material. I am especially grateful to these individuals
on the customer council, each of whom has made an important
contribution to the book:

 Name	 Affiliation	 Country

Bob Becker	 Product Development 	 United States
	 Advantage Group
Chuck Blevins	 LifeScan, Inc. (Johnson 	 United States
	 & Johnson)
Jim Callahan, PMP	 C-Cor, Incorporated	 United States
Alan Chachich	 Breakthrough NPD	 United States
Frankie Chan	 T&K Industrial 	 Hong Kong
	 Company Limited (China)
Mike Clem	 Cordis Accelerated 	 United States
	 Medical Ventures
	 (Johnson & Johnson)
Mike Cohn	 Mountain Goat 	 United States
	 Software
Mike Dowson	 Draeger Safety	 United Kingdom
Ricco Estanislao	 Johnson & Johnson 	 China
	 Worldwide Emerging
	 Markets Innovation
	 Center

John Farnbach	 Silver Streak 	 United States
	 Partners LLC
Gregory D. Githens, 	 Catalyst Management	 United States
PMP, NPDP	 Consulting, LLC
Mike Griffiths	 Independent Consultant	 Canada
David Gunderson	 Micro Power 	 United States
	 Electronics, Inc.
Greg Krisher	 GE Water & Process 	 United States
	 Technologies, Analytical
	 Instruments
Jeff Oltmann, PMP	 Synergy Professional 	 United States
	 Services, LLC
Barry Papoff	 Harris Corporation	 Canada
David Petrie	 California State University, 	 United States
	 Fullerton
Roman Pichler	 Pichler Consulting Ltd	 United Kingdom
Katherine Radeka	 Whittier Consulting 	 United States
	 Group, Inc.
Radhika Ramnath	 Cadence Design Systems	 India
John Shambroom	 Shambroom 	 United States
	 Associates, LLC
Kulbhushan Sharma	 Quark Media House 	 India
	 India Pvt. Ltd.
Thomas Sigemyr	 IVF	 Sweden
Reardon Smith 	 Business Vectors Inc.	 United States
NPDP, CMC
James Joseph Snyder	 Medtronic, Inc.	 United States
Gary J. Summers, Ph.D.	 Skillful NPD	 United States
John Tepper	 Alpha Med-Surge, Inc.	 United States

284 CUSTOMER COUNCIL

A

A3 reports, 113–114
adaptive action, 180
Agile Development Conference, 286
agile development style: adaptive action to

correct plans in, 179–180; automating
building and testing activities, 212;
backlog vs. project completion in, 180;
barely sufficient processes in, 209;
coping with change in, 5; Extreme
Programming, 14; feature replacement
in, 33; loose-tight planning with
iterations, 188–189; methodologies
for, 14; pairing and, 144; process
standardization with, 207; refactoring
and technical debt, 226, 228; response
to change vs. following plans, 179;
robustness and agile concepts, 79; team
meetings for, 135–136; using for other
products, 25–26, 29; values of, 231–232;
“you aren’t going to need it”, 228–230.
See also Agile Manifesto; XP

Agile Manifesto: design simplicity and, 16,
22, 26; development processes in, 205;
emphasis on individual in, 182; feedback
in XP practices and, 23; individuals
acknowledged in, 127, 152; methods
outlined in, 13, 14; response to change vs.
following plans, 179; text of, 12; value of
working products, 211

Agile Project Leadership Network, 177, 286
Agile Project Management (Highsmith), 177,

190
Agile Retrospectives (Derby and Larsen), 201
analysis-think-change, 240
anticipating customer needs, 47–52;

anticipating change, 5–6; forecasting
vs., 47; immersing developers in
customer environment for, 48–51, 55;
project planning vs., 185–186

Apple Computer, 50
assessing explorations, 91, 93–94
authority and teams, 139–141, 152
automobile design: body panel decisions

in, 119; delaying decisions on, 118–120;
using modular architecture, 65–66

Avery, Christopher, 138

B
backlog in agile development, 180, 188
Beck, Kent, 20, 23
Berra, Yogi, 107, 114, 177, 178
best practices: heavy process and, 208;

management judgment and, 26–27;
opposite of, xiii, product development
and, 13; project difficulties following,
129–130

Black & Decker, 66–67, 73, 170–171
Black-Scholes formula, 174
blogs, 49–50
BMW, 41
bodies of knowledge approach, 129–130
Boehm, Barry, 8–10, 24, 35–36, 125–127, 131,

215–221
Boeing, 189
bottlenecks and queues, 221–226;

 identifying bottlenecks, 222–223;
impeding flexibility with queues, 226,
230; theory of constraints methodology,
222; wait times and myth of capacity,
223–226

bottom-up change, 244–248; combining
with top-down, 245; top-down vs.,
233–234

287

Index

288 INDEX

Box, George, 163
brainstorming, 251–252
Bridges, William, 237–238, 245
Brooks, Frederick, 231
Building the Bridge As You Walk On It, 127

building vs. scaling down processes,
207–209, 230

burndown charts, 198–199
burnout, 18

C
calculus, 110
call options, 173
Callahan, Jim, 150
Canadian pharmacy, 264
cascading change, 117
C-Cor, 150
CD-ROM drive architecture, 67–72, 80–81
change: accommodating predictable,

67–73, 84; agile skills coping with, 5;
anticipating, 5–6, 249–264; cascading,
117; cost of, 8–10; dealing with product,
2–7; engineering, 107, 119; experience
dealing with, 129; feeling at core of
successful, 239–240; guiding via teams,
241; higher level requirements reducing,
40–47, 55; identifying bottlenecks with
proposed, 223; individual’s comfort with,
128; influences requiring project, 4–5;
innovation and, 2, 29; institutionalizing,
244; intrinsic risk management with
rapid, 192; isolating volatility, 74;
maintaining continuous, 243; manag
ing projects and, 177–178; providing
for product growth, 73, 80; top-down,
239–244; transition vs., 237; urgency
leading to, 240; user stories keeping cost
low for, 46–47; using flexibility tools
offensively, 264. See also cost of change;
organizational change

chicken test, 105
Chrysler, 20, 43, 119
chunk architectural elements, 57, 58–59, 60
clustering product elements, 76
Cockburn, Alistair: 144, 207, 212. See also

mastery levels for team members
COCOMO (Constructive Cost Model), 125
Cohn, Mike, 156–157
collective code ownership: coding

 standards and, 19–20; defined, 18; safety
net for, 21; translating practice to other
products, 26

co-located teams: communication patterns
for, 148–150; dispersed teams and, 141,
142; meeting together initially, 147;
partially, 146–150; productivity and,
143–144; working with, 14, 141–146

communications: analyzing co-located
team, 148–150; cascading changes in
corporate, 117; communicating orga
nizational change, 241–242; cultural
factors and, 22; managing team’s elec
tronic, 150–151, 152; as XP value, 20

computers. See desktop computers
conducting retrospectives, 202–203

consensus in group decisions, 159–161
Constantine, Larry, 57
constraints: set-based design, 109–113;

Toyota constraints checklists, 112
constructing exploration models, 91, 92–93
Constructive Cost Model (COCOMO), 125
continuous integration, 18, 21, 26
convergence, 10–11, 116
cooked meat instrument, 218–221, 250–251
cordless screwdrivers, 66–67, 170–171
corporate culture. See cultural factors
cost of change: factors influencing labor

costs, 125–127; front-loaded prototyp
ing and, 95; growing during project,
8–10; in hardware vs. software, 65, 83,
211; lowering with delayed decisions,
119; modular architecture and, 64, 67;
psychological, 123; set-based design
and, 114–115; simple design and, 16, 17,
22, 228–229

costs of iterations: economics of prototyp
ing, 101; lowering, 39–40; 3-D printer
prototyping and, 97–100

courage, 21, 23
Credit Suisse, 49
critical path, 156
critical success factors, 2
cross-functional teams, 138–139; product

architecture and, 73; product require
ments and, 34

cultural factors, 232; communication and,
22; corporate cultures developing Level
Xers, 131; corporate discouragement of
failure, 90; impeding flexible devel
opment, 38; inertia and organizational
change, 96; set-based design and
Western mindset, 115

currencies used, 275

INDEX 289

customer iteration cycle. See iterations
customers: anticipating needs of, 5–6,

47–52, 55; changes in product require
ments by, 4; combining iterations
with feedback from, 35–36, 37–38, 55;
completion measured by feedback
from, 180–181; developing product
requirements from needs, 31; having
on team, 26; IKIWISI, 4, 31; immers
ing developers in customers’ environ
ment, 48–51, 55; incremental releases
for, 209–210; internal, 54; lead user
research, 51–52; misleading feedback
from expert, 53; pitfalls of feedback
from, 52–54, 55; users vs., 267; value of
feedback in product development, 34–
40; value of incremental development,
210; vision statements developed from
surveys of, 42; VOC research with,
53–54

D

Darwin, Charles, 1
DeCarlo, Doug, 177
decision gradients, 159–160
decision making, 153–176; choices for

improving, 153–154; critical path
in, 156; cross-functional, 138–139;
decision gradients, 159–160; defer
ring, 108; finding linked decisions,
171–173; imperfect nature of, 161; last
responsible moment, 154–157, 175;
mastery levels and quality of, 129–131;
point-based vs. set-based, 109–111;
preventing premature, 115, 118–122;
procrastination vs. last responsible
moment, 157–158; progressive, 120–122;
pushing decisions down to improve
response time, 194; real options
thinking, 173–175; set-based design and
better, 115; team structure and, 158–
161; timeboxes and, 190; uncertainty
and, 161–162, 165, 167, 192, 204. See also
decision trees; delaying decisions

decision tree software, 170–171
decision trees, 162–173; about, 162–164,

176; benefits of, 172–173, 176;
employing, 164–169; finding linked
decisions in, 171–173; flipping, 170–171;
illustrated, 163, 166, 167, 168; value of
perfect information in, 169–171

delaying decisions: accommodating change
in cordless screwdriver, 67; better
information in set-based design with,
115; making last responsible moment
decisions, 154–157, 175; photocopiers as
example of, 120, 121; procrastination vs.,
157–158; set-based design and deferring
decisions, 108; Toyota’s style of, 118–122

Denso, 66
Derby, Esther, 201, 203
Design of Experiments methodology, 101
design simplicity, 16, 22, 26
desktop computers: CD-ROM drive

development for, 67–72, 80–81;
designing interface of, 79; drawing
architectural schematics of, 75–76;
improvements in prototyping using
technology of, 86; modular architecture
in, 64–65

Developing Products in Half the Time (Smith
and Reinertsen), xv, 121, 281, 285

development processes, 205–230;
balancing anticipation and adapta
tion, 212–213; bottlenecks and queues,
221–226; build rather than scale
down, 207–209; emergent, 205–209;
flexible processes basics, 209–215; low-
level standardization, 206–207, 230;
managing change with YAGNI, 228–
230; refactoring and technical debt, 226,
228; risk balancing in, 215–221, 230;
shifts from flexible to structured, 221,
222, 230; software methodology research
on, 208–209; structure balanced with
flexibility, 215–221; tacit knowledge,
213–215, 230; wait times and myth of
capacity, 223–226

development teams. See teams
disclaimers, 26–27
dispersed teams: about, 141, 142; changes

due to, 5; complications running,
146–147

Disraeli, Benjamin, 249
disruption: flexibility and lack of, 2;

systemwide impact of change and, 8, 9
Duarte, Deborah, 146, 150

290 INDEX

E
Edison, Thomas, 85, 87
e-mail standards, 150–151, 152
emergence: process and, 127, 205–206;

requirements and, 4, 38
employee blogs, 49–50
empowering teams, 234, 243
Evangelists, 246
examples, dated, xix. See also product

scenarios
exhaust systems, 118
expectations management, 190–191
experimentation, 85–106; corporate

discouragement of failure, 90; defined,
85, 86–87; exploration as, 90–94;
failure in, 87–90; flexibility and, 85–86;
mistakes vs. failures, 88; observing
experiments, 91, 93; prototyping and,
94–104; resolving uncertainty in
decision making with, 162; technologies
enabling prototyping, 97–98, 99; testing
prototypes, 104–106

expert customer feedback, 53
explicit knowledge, 182, 213–214
exploration: assessment step for, 91, 93–94;

constructing models in, 91, 92–93;
defined, 90–92; iterative process in, 91;
managing risks with, 194; planning for,
91, 92; run step for, 91, 93

Extreme Programming. See XP
eXtreme Project Management (DeCarlo), 177

F

failure: corporate discouragement of, 90;
experimentation, 87–90; finding bigger
problems ahead from, 193; learning from
prototyping, 89; mistakes vs., 88; testing
for product, 104–106

Farnbach, John, xi–xii
FDA (U.S. Food and Drug Administration),

32, 275
feedback, 34–40; combining iterations with

customers’, 35–36, 37–38, 55; measuring
product completion by, 180–181; pitfalls
of expert customer, 52–54, 55; XP and,
21, 23

feelings, 199; and change, 239–240
Ferrari F430 sports car, 62, 63
final testing, 106

flexibility: applying selectively, 9; benefits
of, 7–8; calculus thinking limits, 110;
convergence and, 10–11, 116; cultural
factors impeding, 38; decision trees and,
162–163; definitions of, 1–2, 196–198;
difficulties implementing set-based, 122–
124; discretionary use of, 29; downside
of, 11–12, 114–115; employed offensively,
264; enhancing with experimentation,
85–86; excessive, 10–11; importance of
teams in, 127–128; lack of disruption
and, 2; last responsible moment and,
154–157, 175; levels of project, 10–11;
managing unknown risks and, 193–195;
modular architecture and, 58–59, 63–64;
organizational changes required for, 90,
96; paradoxes in implementing, 233–237,
248; postponement and, 59; project
management as key in, 177–178; reducing
costs of with set-based design, 114–115;
strengthening tacit knowledge for, 182;
XP practices and, 14. See also flexible
processes; implementing flexibility; XP

Flexibility Index, 196–198
flexible processes, 205–215; about, 205–

206; balancing risk in, 215–221, 230;
emergence of, 205–209, 230; iterative and
incremental innovation, 209–212, 230;
low-level standardization in, 206–207,
230; queues as impediment to, 226; scaling
down processes, 207–209, 230; shifting to
structured processes, 221, 222, 230

flexible project management: institution
alizing, 244; mainstream vs., 178, 203;
manager’s role in, 182–189; project plans
in, 178–180; rolling-wave planning,
186–188

flipping decision trees, 170–171
food processor, 259–263
footstool, 42, 241, 242
following plans: allegiance to, 2, 178–180;

response to change vs., 179; rewards for,
181

forecasting, 6, 47
front-loaded prototyping: guidelines for,

100–104; traditional vs., 95–96; using for
surgical laser, 98–100

functional architectural elements, 57, 58–59,
60

INDEX 291

G

Gates, Bill, 31
generalists, 136–137
Generation X lifestyle, 50
Google, 50
Griffiths, Mike, 147
Grove, Andrew, 194–195

H
heating pad decisions, 167–169
Hewlett, Bill, 183, 240
Hewlett-Packard, 41–42, 195–196, 240,

241, 242
Highsmith, Jim, 54, 177, 190
Hohmann, Luke, 48

I

Iansiti, Marco, 91
IBM, 88
IKIWISI (“I’ll know it when I see it”), 4, 31
IMNIL (“I might need it later”), 229
imperfect decision making, 161
implementing flexibility, 231–248; bottom-

up change, 233–234, 244–248; building
vision of change, 241; celebrating
successes in, 243; empowerment
and, 234, 243; exposing or sheltering
projects, 237; gradual or ambitious
goals for, 236–237; guiding change via
teams, 241; paradoxes in, 233–237, 248;
starting small or big, 234–235; starting
with piece or whole package, 235–236;
summary, 248; top-down change, 233–
234, 239–244; transitions in, 237–239.
See also flexible project management

improving decision making, 153–154
incremental innovation, 209–212, 230
indecision and flexibility, 11–12
inefficiencies in over-dedication, 133–135
information technology (IT): 213–214, 215;

customers and, 19, 180
innovation: areas where flexibility can

aid, 7–8; change required for, 2, 29;
decline in, 2–3; iterative and incre
mental, 209–212, 230. See also product
development

integral product architecture: defined, 59;
modular vs., 58–59, 63; performance
advantages, 60–61, 63; shifting design
from modular to, 61. See also modular
product architecture

integrated risk management, 191–192
Intel, 131, 194
interaction of product modules, 80
internal customers, 54
intrinsic risk management, 191–192
ISO 9000, 3
iterations: centrality to flexibility, xix,

combining with customer feedback, 35–
36, 37–38, 55; exploration and iterative
process, 91; feature replacements
during, 33–34; having working product
at end of, 14; incremental innovation
processes and, 209–212, 230; iterative
organizational change, 234, 235; loose-
tight planning and, 188–189; lowering
costs of, 39–40; managing risks with,
194; measuring completion in, 180–181;
retrospectives for, 202; risk manage
ment and, 192–193; story cards for,
46; velocity of, 189. See also costs of
iterations

J

Jaguar, 41
jeepney, 61–63
Johnson & Johnson Worldwide Emerging

Markets Innovation Center, 26

K

Kerth, Norman, 201
Kessler, Robert, 144–145, 146
keypad, 81–82
knowledge management, 213
Kotter, John, 234, 239–243, 245, 248

L
language layers, 206–207
Larman, Craig, 12
Larsen, Diana, 201, 203
last responsible moment: defined, 155;

procrastination vs., 157–158; using,
154–158, 175

lead users, 51–52, 53
leadership for implementing flexibility,

233–234
leaf nodes in decision trees, 164
Level X developers, 130, 131, 145, 159

292 INDEX

levels: project flexibility, 10–11. See also
mastery levels

Lexus, 41, 42–43
Liker, Jeffrey, 200
linked decisions, 171–173
lock analogy, 102–104
loose-tight planning, 188–189
low-level standardization, 206–207

M

M/M/1/∞ queue, 224, 225, 226
MacCormack, Alan, 34–36, 91, 128–129, 181,

215, 220
mainstream project management: about,

177; allegiance to project plans, 178–180;
emphasis on processes in, 182; flexible
vs., 178, 203; views of project completion,
180–181

management by walking around (MBWA),
183–184

Managing the Design Factory (Donald
Reinertsen), 140

Manns, Mary Lynn, 245, 247–248
manufacturing, 1
market changes, 4
Marshall, Jon, 155
mass customization, 1, 59
mastery levels for team members: Cockburn,

129–130, 131–132, 206, 208, 209, 214. See
also Level X developers

McQuillen, David, 49
Meat temperature sensor, 218, 250–251
Mercedes Benz, 41, 43
methodologies: agile software development,

14; Design of Experiments, 101;
development processes in software,
208–209; Pugh concept selection, 112;
theory of constraints, 222. See also agile
development style; Agile Manifesto

metrics: burndown charts, 198–199;
Flexibility Index, 196–198; sharing and
acting on, 200; strategic vs. tactical,
195–196; team mood as, 199–200

Microsoft, 49, 73
mindfulness, 194
mistakes: exploration vs., 90; failures vs., 88
modular product architecture, 57–84;

aligning organization boundaries with,
74–75; automobile design using, 62,
65–66; CD-ROM drive, 67–72, 80–81;
cordless screwdrivers, 66–67;

decisions in approaches to, 72–74;
defined, 58–59; designing interface,
79; desktop computers’ use of, 64–65;
isolating volatility, 73; objectives for,
63–64; placing functionality in modules,
78; providing for product growth, 73,
81; reducing coupling, 73–74; shifting
boundaries in architectural domains,
83; steps in designing, 74–78. See also
integral product architecture

money-for-adaptability (MFA), 212, 213
money-for-information (MFI), 212, 213
Morgan, James, 200
Mountain Goat Software, 156–157
mules, 40, 93

N

NASA (National Aeronautics and Space
Administration), 218

needle-in-a-haystack metaphor, 6

O

OEM (original equipment manufacturer),
169, 219

offensive flexibility, 264
Olson, Gary, 143, 146
Olson, Judith, 143, 146
Only the Paranoid Survive (Grove), 194–195
organizational change: bottom-up,

233–234, 244–248; building vision of,
241; celebrating successes, 243; com
bining bottom-up and top-down, 245;
communicating and building owner
ship in, 241–242; continuing, 243;
empowerment and, 234, 243; exposing
or sheltering projects, 237; gradual or
ambitious goals for, 236–237; guiding
via a team, 241; leadership required for,
233–234; overview, 232–233; patterns for,
246–248; risks in iterative, 235; starting
small or big, 234–235; starting with piece
or whole package, 235–236; top-down,
233–234, 239–244, 245. See also analysis-
think-change, see-feel-change

Orion, 98–100

P
Packard, Dave, 183
pair programming. See pairing

INDEX 293

pairing, 17–18; agile software development
and, 144; coding standards, 19–20;
continuous integration with, 18, 21, 26;
non-software example, 145–146; origins
of, 20; safety net for collective code
ownership, 21; translating practice to
other products, 26; types of, 145

parallel development: parallel prototyping,
102–104; set-based design vs., 112–113

Pareto principle, 8
patterns: defined, 245; organizational

change using, 246–248
people factors: commitment to team,

135–136; cultivating specific areas of
depth, 137; dedication of time, 133–135;
desirable qualities for teams, 132–137;
establishing paths for mastery, 132;
evaluating mastery levels, 129–131;
importance of feelings in change, 239–
240; individual’s comfort with change,
128; influence on development costs,
125–126, 132; organizational change
and, 237–238; phases in transition
process, 235; technical and social skills,
132–133; types of pairing by, 145; useful
experiences, 128–129. See also cultural
factors

personal computers. See desktop computers
personas, 44
Peters, Tom, 105
phased development: xvi, 3–4, 5–6, 10;

decisions and, 153, 154–155; docu
mentation heavy, 32, 211; iteration and,
193, 209; layers of development process
and, 207

photocopiers, 120, 121
pig, chicken, and cow analogy, 135–136
planning: anticipation vs., 185–186;

exploration process, 91, 92; loose-tight,
188–189; need for 38; rolling-wave,
186–188; XP project, 15. See also project
plans

platform architecture, 59
platforms, 1
point-based design, 108–110, 111, 113
postpartums/postmortems, See

retrospecitives
postponement, 59
printers; 48; 3-D, 97–98, 99; Hewlett-

Packard DeskJet, 41–42, 241, 242
probabilities, estimating, 254

problem-solving, 129, 244
processes. See development processes
procrastination: anticipation vs., 186; last

responsible moment vs., 157–158
product architecture: attention to, 34;

defining, 57–58; design-level changes
in, 81–83; modular vs. integral, 58–63.
See also integral product architecture;
modular product architecture

product audit, 201–202
product development: creating working

products early in cycle, 34; customer
feedback in, 34–40; decision making
objectives and methods for, 153–154;
designing to specification, 31–32;
factors influencing costs of, 125–127;
implementing flexibility in small
or big projects, 234–235; loose-tight
planning with iterations, 188–189;
overspecification trap in, 36–37;
prototyping and successful, 35–36;
requirements creep, 32–34; specifying
at higher level, 40–47, 55. See also
innovation; project management;
specifications

product elements: chunks and functional,
57, 58–59, 60; clustering, 76

product vision: project manager’s preser
vation of, 184; statements of, 41–44

productivity and co-location, 17–18;
143–144

products: accommodating predictable
change for, 67–73, 84; changes to
improve reliability, 240–241; designing
interface for, 79; drawing architectural
schematics of, 74–76; emergence of
requirements, 4, 38, 127; isolating
volatility in, 74; metaphor used in
XP, 16; objectives for modular, 63–64;
pitfalls of customer feedback on, 52–54,
55; placing functionality in modules, 78;
project personas for, 44–45; providing
for growth of, 73–74, 81; reorienting
quality of, 181–182; unused features
in, 37; vision statements for, 41–44;
working, 13, 30, 34–35, 188, 209, 211. See
also modular product architecture

progressive decision making, 120–122
Project Analyzer, 27–29
project management, 177–204; aligning

organization with product architecture,
75; allegiance to project plans,

294 INDEX

178–180; applying to innovative
projects, 4; authority of teams, 139–141;
burndown charts, 198–199; Flexibility
Index, 196–198; flexible vs. main
stream, 178, 203; manager’s role in
flexible, 182–184; managing set-based
design, 115–117; measuring team mood,
199–200; planning vs. anticipation,
185–186; project completion, 38;
reorienting product quality, 181–182;
risk management, 191–195; sharing
and acting on metrics, 200; shifting
emphasis from processes to individuals,
182; strategic vs. tactical metrics for,
195–196; tacit vs. explicit knowledge,
182, 213–214; timeboxing, 190–191;
using retrospectives in, 200–203;
working with Level Xers, 131. See also
planning; project managers; project
plans

Project Management Institute, 177, 191,
251

project management software, 179
project managers: managing by walking

around, 183–184; preserving product
vision, 184; role in flexible project
management, 182–184; supporting and
shielding team members, 184

project plans: allegiance to, 2, 178–180;
measuring success and rewards by, 181;
response to change vs., 179

Project Retrospectives (Kerth), 201
project risk management, 191–195; about,

191; integrated vs. intrinsic, 191–192;
iterative development and, 192–193;
managing unknown risks, 193–195

projects: establishing thumbprints for,
27–29; evaluating value of under
taking, 174; exposing or sheltering
transitional, 237; Flexibility Index
for, 196–198; maintaining sustainable
pace, 18; process shift over life of, 221,
222, 230; tracking completion with
burndown charts, 199; views of project
completion, 180–181

prototyping: defined, 94; delaying decisions
during automotive, 118–120; economics
of, 101; experimentation and, 94–104;
learning from failures in, 89; lowering
costs of, 39–40; MacCormack’s findings
on, 34–35; parallel vs. sequential,
102–104;

refinement of, 100–101; technologies
enabling, 97–98, 99; traditional vs.
front-loaded, 95–96; user feedback
and, 35–36; pruning, 115–118

Pugh concept selection method, 112
put options, 173

Q
Quadrus Development, 147, 264
queues: impeding flexibility with, 226, 230;

M/M/1/∞ model for, 224, 225, 226;
wait times in, 224, 225, 226, 227

queuing theory, 224

R

radical collocation, 143
rapid prototyping, 96–100, 275
reading decision trees, 164
real options thinking, 173–175
reducing coupling, 73–74
refactoring: about, 17, 226, 228; arresting

architectural decay and, 80; safety net
for collective code ownership, 21

refinement of prototypes, 100–101
Reinertsen, Donald, 32, 34, 121, 140, 142
reliability of products, 240–241
requirements: emergent, 4, 38, 127;

requirements creep, 32–34. See also
specifications

retrospectives, 200–203; benefits of, 200–
201; conducting, 202–203; iteration,
202; postmortems and, 201; project, 202

rice cooker use case, 45–47
Rising, Linda, 245, 247–248
risks: balancing opposing, 215–221, 230;

decision making triggered by, 156;
found in iterative organizational
change, 235; loose-tight planning
and managing, 189; organizational
change and, 234. See also project risk
management

robustness, 79
rolling-wave planning, 186–188
Rolls-Royce, 105

S

scaffolding, 40, 93, 105
scaling down processes, 207–209, 230
schematics, 57–58, 70–71, 75–76
Schrader tire valve, 80

INDEX 295

scope creep, 32–34
see-feel-change, 240, 241, 248
selective flexibility, 9
self-organizing teams, 25, 138
sequential prototyping, 102–104
set-based design, 107–124; benefits of, 114–

115; constraints basis, 109–113; defined,
108; delaying decisions for better
information, 115, 118–122; difficulties
implementing, 122–124; point-based vs.,
108–110; problem solving with, 111–113;
pruning, 115–118; technical reports
supporting, 113–114

single-minute exchange of die (SMED), 1
Six Sigma, 3, 5
sketching design layout, 76–78
skills: cultivating specific areas of depth,

137; establishing paths for gaining
mastery and, 132; evaluating mastery
levels, 129–131; specialists vs. generalists,
136–137; technical and social, 132–133;
types of pairing by, 145

small releases, 15–16, 26
Smith, Preston G., xvi, 121, 285–286
Snyder, Nancy, 146, 150
social skills, 132–133
software, special characteristics of, 25
Sony Walkman, 60, 61
specifications: avoiding change with higher

level, 40–47, 55; designing product to,
31–32; development using prototyping
vs., 34–36; excessive, 36–37; frozen,
31–32, 54–55; vs. requirements, 253

Spinrad, Robert, 153, 154
Standish Group, 37
stand-up meetings: agilists use of, 135–136;

formats for, 148–150
stereolithography (SL), 97
story cards for iterations, 46
Stage-Gate. See phased development
strategic project metrics, 195–196
structured development processes: risks in,

216, 217; shifting from flexible to, 221,
222, 230

stubs, 93, 105
success: celebrating implementation, 243;

commercial success vs. manager’s view,
34–35; feelings at core of successful
change, 239–240; improving chance of
in implementation, 235; innovation and
critical success factors, 2; measuring by
project plan, 181; prototyping products,
35–36

surgical drapes, 52
surgical laser, 98–100
Suzuki, Ichiro, 42
synergy in whole-package transitions,

235–236

T

tacit knowledge, 182, 213–215, 230
tactical project metrics, 195–196
TEAC, 67–71
team leaders. See project managers
teams, 125–152; authority of, 139–141, 152;

changes facing dispersed, 5; co-located,
14, 141–146; commitment and pig,
chicken, and cow analogy, 135–136;
creating great, 131–132; cross-functional,
138–139; decision making within,
158–161; dedicating people to projects,
133–135; desirable human qualities
on, 132–137; difficulties with Level X
members, 130, 131, 145, 152; electronic
communications among, 150–151, 152;
empowering to lead change, 234, 243;
experience in product delivery, 34–35;
factors influencing development costs,
125–127; guiding change via, 241;
having customer on, 18–19; importance
in flexibility, 127–128; managing by
walking around, 183–184; measuring
mood of, 199–200; meetings for agilists,
135–136, 148–150; partially co-located,
146–150; roles and responsibilities of
members, 138; selecting people on,
128–132; self-organizing, 138; shar
ing metrics with, 200; specialists vs.
generalists on, 136–137; subteams for
set-based design, 123; supporting and
shielding members of, 184; sustaining
project pace, 18; training in flexible
development techniques, 242. See also co-
located teams; dispersed teams

Teamwork Is an Individual Skill (Avery), 138
technical debt, 228
technology: change stemming from, 4;

changes in, 5; choosing with decision
trees, 163–164; enabling shifting
boundaries in architectural designs, 83;
prototyping enabled by, 97–98, 99

template for a change, 250–251

296 INDEX

test-driven design, 16–17, 21, 26
testing: deferring when expensive, 211–212;

front-loaded vs. final product, 106; as
experimentation, 104–106; value of
failure in, 87–90

theory of constraints, 222
Thomke, Stefan, 88, 100
3-D printers, 97–98, 99
3M surgical drapes, 52
thumbprints for projects, 27–29
timeboxing, 190–191
tolerances, 119–120
tool kit metaphor, xvii, 232
tool-safe dies, 122
top-down change: bottom-up vs., 233–234;

combining with bottom-up, 245;
Kotter’s steps for, 239–244

tortillas, 48
Toyota: constraint checklists, 112; design

of interfaces at, 79; immersing devel
opers in U.S. environment, 50; isolating
non-changing areas, 65–66; lack of
employee complacency at, 243; man
aging rate of convergence, 116; pre
venting premature decisions, 122, 123;
product vision statement at, 43; retro
spectives at, 200; SMED technique at,
1; standardizing low-level activities at,
207; tradeoffs described in A3 reports,
113–114; use of set-based design, 107;
use of tacit knowledge, 214, 215

trade-off curves, 112
training, 242
transitions, 237–239
T-shaped individuals, 137
Turner, Richard, 24, 125, 131, 215

U

uncertainty: determining sensitivity of
decisions to, 165, 167; intrinsic risk
management and, 192, 204; reducing
decision making, 161–162

underlying XP values, 20–23
U.S. Army jeep, 61, 62, 63
U.S. Food and Drug Administration. See

FDA
U.S. National Aeronautics and Space

Administration (NASA), 218

unk unk (unknown unknown) risks,
193–195

urgency for change, 240
use case technique, 45–46
user stories, 46–47

V

values in agile development style, 20–23,
231–232

velocity, 189
Venn diagrams, 112, 113
virtual teams. See dispersed teams
vision: building for organizational change,

241, 242; product, 41–44, 184
voice of the customer (VOC), 53–54

W

waterfall processes, 181, 193, 201
Watson, Sr., Thomas, 88
Williams, Laurie, 144, 146
Windows XP, 73
Wohlers Associates, Inc., 97

X

XP (Extreme Programming): about, 14–15;
applied to personal care products, 26;
assessment of, 23–25; coding standards,
19–20; collective code ownership, 18,
19–20, 21; continuous integration with,
18, 21, 26; design simplicity in, 16, 22,
26; feedback valued as practice, 21,
23; having customer on team, 18–19;
lowering costs of iterations, 39–40;
maintaining sustainable pace in, 18;
origins of, 20; pairing, 17–18; product
metaphor in, 16; project planning in,
15; refactoring, 17; small releases, 15–16;
test-driven design, 16–17, 21; underlying
values of, 20–23. See also iterations;
pairing; refactoring

Y

YAGNI (“you aren’t going to need it”),
228–230

Yahoo!, 50
Young, John, 240, 241, 243

