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  Notes 

Introduction 

1.	 Iteration comes from the software development world (see Chapter One). In 
the lean manufacturing and lean product development fields, the related 
term is small batch size, for which see Reinertsen’s Managing the Design Factory.   

 Chapter One 

1.	 See the Boston Consulting Group’s Innovation 2006.   
2.	 Membership in the Project Management Institute stood at 485,000 with 

762,000 credentialed PMPs as of March 2017 and has grown from 237,000 in 
2007. See the Project Management Institute’s Member Fact Sheet.

3.	 This is a short discussion of change in modern business. For a longer and 
more strategic treatment, See Brown and Eisenhardt’s Competing on the Edge.   

4.	 Arthur Fry and Spencer Silver invented the sticky note in 1970, based on 
Silver’s 1968 invention of the “low-tack” adhesive involved. It was 1979 before 
3M found a means for marketing it successfully. See en.wikipedia.org/wiki/
Spencer_Silver and inventors.about.com/library/inventors/blpostit.htm (both 
accessed September 24, 2018).  

5.	 See Smith and Reinertsen’s Developing Products in Half the Time.   
6.	 For a contemporary treatment, see Cooper, Edgett, and Kleinschmidt’s 

Portfolio Management for New Products. For good coverage of the balance 
between new and mature products, see Roussel, Saad, and Erickson’s Third 
Generation R&D.   

7.	 See Boehm’s Software Engineering Economics, p. 40.  
8.	 See Boehm and Turner’s Balancing Agility and Discipline, pp. 218–219.  
9.	 See Terwiesch, Loch, and De Meyer’s “Exchanging Preliminary Information in 

Concurrent Engineering.” They provide detailed cost-of-change information 
for three automotive components, and their results support the 10x/phase 
rule. However, this is an example of the worst part of the Pareto principle. 
They only investigate the two most expensive transitions in the development 
process (toolmaking), which together yield a 100x cost increase.  
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10.	 See Larman’s  Agile and Iterative Development.   
11.	 See agilemanifesto.org/principles.html, accessed September 24, 2018.  
12.	 This discussion draws from Beck’s  Extreme Programming Explained.  

Although this book comes in two editions (dated 2000 and 2005), it is 
actually more like parts 1 and 2. The first edition lays out the basics, and the 
second edition, requiring some existing knowledge of XP, describes it more 
broadly, provides case studies, and covers more advanced topics, such as the 
roles of project planning and software testing and the scalability of XP to 
large teams, dispersed teams, and life-critical applications. Consequently, 
this discussion follows the first edition more than the second one. Also see 
en.wikipedia.org/wiki/Extreme_Programming (accessed September 24, 2018).  

13.	 Although commonly used, the term  pair programming is misleading even for 
software development, because these pairs not only program but design, test, 
integrate, and document. Compare to the shift from  concurrent engineering  to  
concurrent development. Thus I use simply  pairing  from here on.  

14.	 See Boehm and Turner’s  Balancing Agility and Discipline,  pp. 230–232.  
15.	 See Beck’s  Extreme Programming Explained  (First Edition), pp. 64–70, for 

more such relationships.. 
16.	 en.wikipedia.org/wiki/Extreme_Programming (Origins section) or informit.

com/articles/article.asp?p=20972&rl=1 (both accessed September 24, 2018).  
17.	 See Beck’s  Extreme Programming Explained  (First Edition), pp. 29–34. 

The second edition adds respect and suggests that others, such as safety, 
predictability, and quality of life, may be important in certain situations.  

18.	 See Boehm and Turner’s  Balancing Agility and Discipline, p. 231.  
19.	 See Eckstein’s  Agile Software Development in the Large.   

  Chapter Two 

1.	 I use  specification  and requirement  interchangeably to mean the written 
description of the product going into development, but I know that some 
people make a clear distinction here. Some say that requirements are the 
wish list at the beginning of the project, while specifications appear in 
the catalog after commercialization. Others believe that requirements are 
for your product, and specifications relate to purchased components or 
materials. Please picture the term you prefer for the up-front description of 
what the product should be.  

2.	 Basic data are from Thomke and Reinertsen’s “Agile Product Development,” 
updated via personal communication with Donald Reinertsen, December 11, 
2006.  

3.	 See MacCormack’s “Developing Products on ‘Internet Time’: The Anatomy 
of a Flexible Development Process,” “How Internet Companies Build 
Software,” and “Creating a Fast and  Flexible Process: Empirical Research 
Suggests Keys to  Success.”  
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4.	 See Boehm’s “Prototyping Versus Specifying: A Multiproject Experiment” for 
details.  

5.	 Source: The Standish Group, standishgroup.com, as reported at the 3rd 
International Conference on Extreme Programming and Agile Processes in 
Software Engineering (XP 2002), Alghero, Sardinia, Italy, May 2002.  

6.	 Lynn and Reilly’s Blockbusters lists a clear and stable product vision as one 
of five factors that distinguished what they call “blockbuster” products from 
others in a ten-year study of seven hundred development projects. For more 
examples of vision statements and how to create them, see their book.  

7.	 From Jeffrey K. Liker, The Toyota Way, McGraw-Hill, 2004 (Figure 5-4). 
Reproduced with permission of The McGraw-Hill Companies.  

8.	 See Morgan and Liker’s Toyota Product Development System, p. 123.  
9.	 See Morgan and Liker’s Toyota Product Development System, p. 260. Also, 

private communication with the authors, November 6, 2006.  
10.	 See Sobek’s “Principles That Shape Product Development Systems,” p. 226.  
11.	 Cooper’s The Inmates Are Running the Asylum describes this technique.  
12.	 For more on this topic, see Cockburn’s Writing Effective Use Cases.   
13.	 For more on this topic, see Cohn’s User Stories Applied.   
14.	 You can often drive user stories to a higher, more change-resistant level by 

writing “epics,” as Cohn describes.  
15.	 See Hohmann’s Innovation Games.   
16.	 Customers (those who pay for your products) are not necessarily users (those 

who use them). For consumer products, the two are often the same, but for 
industrial products, they are usually different: a buyer or a manager may 
purchase the computer on your desk at work, but you have to use it and 
cope with it every day. I use the terms interchangeably, but please apply 
the pertinent one.  

17.	 Sometimes Marketing and Sales personnel are nervous about letting 
engineers talk to customers, fearing that they might say something 
inappropriate. If so, train those involved using Hohmann’s guidance 
described in Beyond Software Architecture, p. 60. 

18.	 See Scoble and Israel’s Naked Conversations for much more on business 
blogging.  

19.	 In Hohmann’s Innovation Games.   
20.	 Both Toyota examples are from Morgan and Liker’s Toyota Product 

Development System, p. 30.  
21.	 For example, see Mariampolski’s Ethnography for Marketers, and Perry and 

her colleagues’ “Creating the Customer Connection.”  
22.	 For more on lead users, see von Hippel’s Sources of Innovation, and for other 

examples and the 3M infection study, see his “Creating Breakthroughs at 
3M.”  

23.	 See Christensen’s The Innovator’s Dilemma.   
24.	 See Highsmith’s Agile Project Management, p. 13. 
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Chapter Three 

1.	 From Stevens, Myers, and Constantine, “Structured Design,” p. 117. 
Quotation attributed to Constantine, who is considered the originator of 
the structured design technique used in software development and was the 
teacher of Stevens and Myers.  

2.	 Adapted from The PDMA Glossary for New Product Development. See pdma.
org/page/glossary_access2#P (accessed September 24, 2018).  

3.	 For more on platforms and platform architecture, see Meyer and Lehnerd’s  
Power of Product Platforms or Feitzinger and Lee’s “Mass Customization at 
Hewlett-Packard: The Power of Postponement.”  

4.	 This shift between integral and modular architectures may appear to 
contradict Christensen and Raynor’s observations in The Innovator’s Solution 
(pp. 127–137). These authors work at the level of industries and describe 
how, in the early stages of an innovation (when I suggest that the need for 
flexibility and thus modularity is greatest), the product’s performance falls 
below customer desires, so designers squeeze performance from the design. 
(integral  architecture). Later, as the technology improves, performance 
exceeds needs and customers are unwilling to pay extra for performance, so 
the industry shifts to a modular architecture that allows more flexibility 
in tuning the product to individual needs at minimal cost. Observe that 
this strategic modularity aims more at changes during manufacture and 
distribution, that is, it is more of a platform architecture approach. In the 
early stages of an innovation, there is still a great need for designers to isolate 
areas of uncertainty and provide for reserve performance where needs are 
likely to grow, so wise designers apply modularity selectively at the design 
level, especially in the early stages of an innovation. This illustrates why 
flexibility techniques must be applied selectively so that performance will 
not suffer excessively just when Christensen and Raynor advise that it is 
most important.  

5.	 Quotation from ferrariusa.com/design_f430text.php, accessed April 23, 2007.  

6.	 These techniques are old. David Parnas provided an elegant (but technical) 
description of them for software nearly three decades ago. See Parnas’ 
“Designing Software for Ease of Extension and Contraction.”  

7.	 Here I follow Ulrich and Eppinger’s Product Design and  Development.   

8.	 For more on considering interfaces as design rules, see Baldwin and Clark’s  
Design Rules.   

9.	 A similar example is the naming of Windows XP covered earlier in this chapter.

10.	 See Thomke’s “Role of Flexibility in the Development of New Products” for 
further discussion. 
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  Chapter Four 

1.	 Sources, respectively: Thomke’s Experimentation Matters,  p. 6; nmlites.org/
standards/science/glossary_2.htm; and www. math.tamu.edu/FiniteMath/
FinalBuild/Fall2001/Module9/ Introduction0.html.  

2.	 Source: Archibald Lemon Cochrane. See his Effectiveness and Efficiency, p. 43. 

3.	 See Thomke’s  Experimentation Matters, pp. 211–214.  

4.	 For an extensive discussion of exploration and hypothesis-based 
experimentation, see Garvin’s  Learning in Action, chapter 5 (specifically what 
he calls the probe-and-learn  process).  

5.	 See Iansiti and MacCormack’s “Developing Products on Internet Time.”  

6.	 The Orion case study was published by Z Corporation in 2001 but is no 
longer available.  

7.	 See Thomke’s “Capturing the Real Value of Innovation Tools.”  

8.	 See Smith and Reinertsen’s Developing Products in Half the Time, chapter 2.  

9.	 See, for example, Montgomery’s Design and Analysis of  Experiments.   

10.	 The lock analogy was inspired by Thomke’s  Experimentation Matters, p. 110. 
For more on parallel versus sequential strategies, see Thomke and Bell’s 
“Sequential Testing in Product Development.”  

11.	 Testing in its broadest sense includes testing an idea, a prototype, or even 
a hunch. Here I consider the narrower interpretation of testing a design, a 
product, or a part of a product.  

12.	 See Peters and Austin’s Passion for Excellence, p. 130. My second engineering 
job was for a manufacturer of aircraft engines twenty-plus years before 
their book appeared. At that time the test used a two-pound seagull, but the 
procedure was the same. This was regarded as the final test of an engine.

Chapter Five 

1.	 Yogi Berra was a famous American baseball player from several decades ago, 
but today he is known better for his illogical but direct manner of speaking.  

2.	 Engineering changes do not constitute flexibility. Engineering changes 
originate internal to engineering and in most cases arise from poor 
engineering judgment. Flexibility stems from changes external to 
engineering. Thus flexibility is beneficial when external change is likely, but 
engineering changes are usually an indication of mistakes.  

3.	 See Ward, Liker, Cristiano, and Sobek’s “Second Toyota Paradox.” This 
article is also the source of the concept for Figure 5.4.  

4.	 See Pugh’s Total Design, section 4.8.  
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7.	 For additional details, see Morgan and Liker’s  Toyota Product Development 
System, pp. 269–274. For examples of A3 reports, guidance on writing them, 
and templates for writing the basic types, search the Web for “A3 report.”

8.	 See Sobek, Ward, and Liker’s “Toyota’s Principles of Set-Based Concurrent 
Engineering.”  

9.	 The examples in this and the following few paragraphs come from Durward 
Sobek’s Ph.D. dissertation.  

10.	 Suggested by Katherine Radeka of Whittier Consulting Group.  
11.	 See Ward, Liker, Cristiano, and Sobek’s “Second Toyota  Paradox.”

Chapter Six 

1.	 From Turner and Boehm’s “People Factors in Software Management.”  
2.	 The book is Boehm and Turner’s  Balancing Agility and Discipline.   
3.	  See Boehm’s  Software Engineering Economics.   
4.	 See Quinn’s  Building the Bridge As You Walk On It.  However, only the title of 

this book is pertinent here, as the book deals with personal change rather 
than project change.  

5.	 See MacCormack’s “How Internet Companies Build Software” for more on 
experience.

6.	 See Loch, DeMeyer, and Pich’s Managing the Unknown, p. 41.  
7.	  See Cockburn’s  Agile Software Development, pp. 14–18, and Boehm and Turner’s  

Balancing Agility and Discipline, p. 48.  
8.	 This has no connection with Douglas McGregor’s Theory X, which 

postulates managers who regard workers as lazy and unwilling to work 
without strong structure and control.  

9.	  This figure results from a multi-year study in a major electronics company 
that categorized engineers’ activities as either adding or not adding value to 
their development projects.  

10.	 In a 2006 article of the same name, Scott Ambler uses the term  generalizing 
specialists and discusses both their benefits to the team and the techniques for 
cultivating them.  

11.	 See agilemanifesto.org/principles.html, accessed September 24, 2018.  
12.	 See Figure 8-7 (p. 156) of Smith and Reinertsen’s  Developing Products in Half 

the Time.   
13.	 Many people call this a “virtual team,” but I dislike this term. Teams exist 

to enhance performance, and it clouds the performance issue to use a term 
that means “being such in essence or effect though not formally recognized 
or admitted” (webster.com, accessed September 24, 2018). Are the members 
virtual, are the activities virtual, or what is it that exists only in essence or 
effect?
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7.	 See Allen’s Managing the Flow of Technology. His more contemporary  
Organization and Architecture of Innovation (pp. 58–61) reinforces his earlier work 
and concludes that electronic communication media, such as e-mail, lack the 
fidelity to substitute for face-to-face communication as distance increases.  

8.	 As suggested at the beginning of this section, because effectiveness drops 
off gradually, various distances are used to define co-location. Reinertsen is 
somewhat more liberal in his definition than I am. Stephanie Teasley and her 
colleagues (quoted a few paragraphs later) are still more liberal.  

9.	 The Olsons’ article appeared in Human-Computer Interaction in 2000.  
10.	 This work was published by Teasley, Covi, Krishnan, and Olson as “How Does 

Radical Collocation Help a Team Succeed?” Both of the quotations that follow 
this paragraph are reprinted with  permission from that article, copyright 
ACM.  

11.	 See Cockburn’s Agile Software Development, pp. 84–88.  
12.	 See Williams and Kessler’s Pair Programming Illuminated.   
13.	 From Duarte and Snyder’s Mastering Virtual Teams. Used with permission.  
14.	 See Duarte and Snyder’s Mastering Virtual Teams, p. 42.      

Chapter Seven 
1.	 Quoted in Maier and Rechtin’s Art of Systems Architecting, p. 272. Robert 

Spinrad is a retired vice president of technology strategy and director of the 
legendary PARC laboratories at Xerox. He is also a member of the prestigious 
National Academy of Engineering in the United States.  

2.	 For example, see Deck’s “Decision Making: The Overlooked Competency in 
Product Development.”  

3.	 “The last responsible moment” was coined in about 2000 by the Lean 
Construction Institute in work they were doing with the British Airports 
Authority to create the construction process for Terminal 5 at London’s 
Heathrow Airport. They needed flexibility because the airlines’ strategic plans 
were likely to change numerous times during the eight years needed to build 
the terminal. In Lean Software Development, Poppendieck and Poppendieck 
brought the term into agile software development, and I elaborate further.  

4.	 In developing this section, I consulted some experts on building consensus. Each 
had a somewhat different way of using the consensus gradient. Consequently, 
what you see here is truly a consensus version of the topic, keeping the elements 
separate so that you can assemble them to suit your needs.  

5.	 For this section, I am indebted to chapter 6 of Savage’s excellent book, Decision 
Making with Insight. This chapter introduces decision trees and provides 
XLTree, an Excel add-in, for creating them. All decision trees in this chapter 
were created using XLTree. Unfortunately, XLTree isn’t compatible with 
contemporary operating systems (Windows 10, for example), but plenty of 
other such tools are available. 
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7.	 For an introduction to utility theory and utility measures, see Savage’s  Decision 
Making with Insight, pp. 194–195.  

8.	 For an example of real options applied to the product development process, see 
Huchzermeier and Loch’s “Project Management Under Risk.”  

9.	 For a starter on real options applied to new product development, see 
Faulkner’s “Applying ‘Options Thinking’ to R&D Valuation,” Angelis’ 
“Capturing the Option Value of R&D,” and van Putten’s “Making Real Options 
Really Work.” Several other helpful articles are available in  Research-Technology 
Management and the  Harvard Business Review.   

10.	 Traditionally, such valuations are made using discounted cash flow (DCF) 
methods, which assume the project will be completed according to the 
original plan. Even when used with a phased development process, 
where the purpose of the phases is that one can kill the project rather 
than continuing to invest, the project is still evaluated on the assumption of 
completing the plan. In contrast, the real options approach allows a project 
to be evaluated more flexibly by making future investments contingent on 
interim results.  

11.	 For a discussion of how real options are equivalent to decision trees, see 
Faulkner’s “Applying ‘Options Thinking’ to R&D Valuation.”      

Chapter Eight 

1.	 The referenced guide is the Project Management Institute’s Guide to the Project 
Management Body of Knowledge.   

2.	 Several other books on agile project management have appeared in the last few 
years. I list DeCarlo’s and Highsmith’s because they generalize beyond software 
development better than most of the others, I believe. Interestingly, an Agile 
Practice Guide, jointly published by PMI and the Agile Alliance, appeared in 
2017, apparently because agile had become such an important topic in PMI that 
it could no longer be ignored. This guide covers a few agile practices, such as 
stand-up meetings (Chapter Six in this book) and retrospectives (Chapter Eight), 
but it doesn’t mention core topics, such as customer involvement (Chapter Two), 
experimentation (Chapter Four), or decision making (Chapter Seven).

3.	 Chapter Nine shows how to combine structured and flexible development 
processes in the same project, depending on the project’s specific demands. 
You can use the same approach to adjust project management to the specific 
characteristics of a project.  

4.	 See the Project Management Institute’s Guide to the Project Management Body of 
Knowledge, p. 356.  

5.	 See Portny’s Project Management for Dummies (Second  Edition), p. 14.  
6.	 See the Project Management Institute’s Guide to the Project Management Body of 

Knowledge, p. 369.  
7.	 Chapter Nine covers anticipation relative to adaptation, which is investing in the 

capability to react quickly when anticipation is not possible or cost-effective.   
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8.	 See Figure 9.4 for an illustration of the way a project naturally shifts from 
anticipation to planning as it progresses.

9.	 For additional information on this method, see Githens’s “Using a Rolling 
Wave for Fast and Flexible Development.” 

10.	 For more detail on agile loose-tight planning, see Cohn’s Agile Estimating and 
Planning.   

11.	 See Thomke’s Experimentation Matters, pp. 168–169.  
12.	 See Highsmith’s Agile Project Management, p. 42.
13.	 Smith and Merritt’s Proactive Risk Management is a good example of this 

literature.  
14.	 Although most agilists have replaced waterfall (phased) processes with 

iterative ones, Jim Highsmith has created a means of combining a phased 
governance process (for managing project investments) with iterative 
development (for flexibility). See his “Agile for the Enterprise: From Agile 
Teams to Agile Organizations.”  

15.	 See Loch, DeMeyer, and Pich’s Managing the Unknown. Although valuable, 
this book is unfortunately also expensive. However, you can read a lengthy 
review of it gratis at https://www.strategy2market.com/Preston-Smith/
Book-Reviews/Managing-the-Unknown/ (accessed September 25, 2018).  

16.	 See Weick and Sutcliffe’s Managing the Unexpected.   
17.	 Summarized with permission from Weick and Sutcliffe’s Managing the 

Unexpected,  pp. 10–17.  
18.	 This metric was inspired by Iansiti’s “Shooting the Rapids,” Figure 1.  
19.	 I intentionally use feel here, but I recognize that some people are quite 

uneasy in expressing their feelings or hearing about others’ feelings. In this 
case, please see Derby and Larsen’s Agile Retrospectives (p. 10) for ways of 
obtaining this information without using that f word directly.  

20.	 See Morgan and Liker’s Toyota Product Development System, p. 211.

Chapter Nine
1.	 See Boehm and Turner’s  Balancing Agility and Discipline, pp. 36–37 and p. 

152.  
2.	 See note 14 in Chapter Eight.  
3.	 See Cockburn’s “Learning from Agile Software Development.”  
4.	 For a description of how IT might be used to capture and manage product 

development knowledge, see McGrath’s Next Generation Product Development.   
5.	 For more on how Toyota manages tacit knowledge, see Morgan and Liker’s 

Toyota Product Development System, pp. 204–205, 229, and 279–280. I describe 
A3 reports and engineering checklists in Chapter Five.  

6.	 As discussed in the Introduction, using structured as the opposite of flexible 
has difficulties in that flexible development is very structured in certain  
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subtle ways. Agilists speak of high- and low-ceremony processes. Nevertheless, 
traditional (used in the rest of the book) seems to miss the mark when discussing 
process, so I will proceed with structured here, knowing that it is not a perfect 
antonym. 

7.	 See Boehm and Turner’s Balancing Agility and Discipline, chapter 5. For non-
software projects, their approach must be modified in two ways. One is to shift 
it to a physical product, and the other is to narrow it to a focus on flexibility 
(Boehm and Turner consider other differences between agile and traditional 
approaches, such as scalability). Also, I do not follow their complete five-step 
process. For an alternative means of adjusting the process used to the needs of 
a specific project, also see the Project Analyzer discussed at the end of Chapter 
One.  

8.	 The infrared measurement technologies and algorithms described here are 
fictitious.  

9.	 Goldratt and Cox’s  The Goal (a business novel) is the classic on this topic, but 
more descriptive material can be found on the Web, for instance, en.wikipedia.
org/wiki/Theory_of_Constraints (accessed September 25, 2018).  

10.	 For bulk arrivals, there is no formula for the answer, so I used the Extend 
discrete-event simulation package from Imagine That, Inc. and covered in 
Savage’s Decision Making with Insight. I assumed that arrivals appear in uniformly 
distributed clumps of one to five items (mean of three), as well as being exponen
tially distributed in time. Extend generated Figure 9.7 too.  

11.	 From “What Testers Can Do About Technical Debt” by Johanna Rothman, 
https://www.cmcrossroads.com/article/what-testers-can-do-about-technical-
debt-part-1 and https://www.cmcrossroads.com/article/what-testers-can-do-
about-technical-debt-part-2, accessed September 25, 2018.      

Chapter Ten 

1.	 Brooks managed development of the OS/360 software system. The quote 
comes from his Mythical Man-Month, p. 242. “System” to him means software or 
hardware.  

2.	 From Kotter and Cohen’s Heart of Change, p. 40.
3.	 For more on pilot projects, see Smith and Reinertsen’s Developing Products in Half 

the Time, chapter 15.  
4.	 From Bridges’ Managing Transitions, p. 37.  
5.	 From Kotter and Cohen’s Heart of Change, p. 2.  
6.	 From Patterson’s Leading Product Innovation, pp. 262–264.  
7.	 See Schaffer’s Breakthrough Strategy for more on this momentum-building process.  
8.	 From Morgan and Liker’s Toyota Product Development System, p. 227.  
9.	 For more on patterns, see en.wikipedia.org/wiki/Software_ pattern, accessed 

September 25, 2018.  
10.	 From Manns and Rising’s Fearless Change, p. 5.  



Chapter Eleven

1.	 This method of managing changes is strongly connected with the tech-
nique used to manage risk in a project. In fact, changes are just a subset 
of the risks in a project. A strong body of knowledge is available in the 
field of project risk management field. I have written a book on this sub-
ject that parallels the technique described in this chapter, and The Proj-
ect Management Institute has published many books about project risk 
management, including their PMBOK Guide. If you search the Internet 
for help on the subject, be sure to search for project risk management; risk 
management alone will bring you information mostly about the insurance 
industry. But please remember that none of this substitutes for building 
an environment that accommodates change.

2.	 Note 1 mentions that managing anticipated changes is quite like project 
risk management. Those managing project risks may not have a tem-
plate like Figure 11.1, but they follow the same steps. The big difference is 
that they do not have a Benefits box. Although they sometimes mention 
benefits (called opportunities in project risk management), very seldom 
do benefits actually occur. Anticipated changes, in contrast, can have 
substantial benefits, sometimes outweighing the costs.

3.	 Although this book is written in U.S. English, it is international in scope. 
Thus, I use a variety of currencies. U.S. dollars, euros, and Japanese yen 
have already been used, so the examples in this chapter employ the Chi-
nese yuan or RMB (which translates into “people’s money” in Chinese).

4.	 This value was obtained by using the cost of delay calculation described 
in chapter 2 of Smith and Reinertsen.

5.	 See chapter 2 of Smith and Reinertsen for a detailed explanation.
6.	 Although this may look complicated, it is actually a relatively simple 

model. It allows for only one benefit and one cost item per anticipated 
change. If you have more than one benefit or multiple costs associated 
with a single change, you can handle this by placing an i subscript on 
pertinent quantities below and summing over i, where i runs from 1 to 
the number of benefits or costs involved.

7.	 Chosen because it is the only change of the three to have both a benefit 
and a cost.

8.	 There are often multiple benefits or costs for a given change. Usually, 
some simple analysis will show that one benefit and one cost are domi-
nant, and you can proceed with them alone. If one doesn’t stand out, see 
note 6 above.

9.	 See the section entitled Tacit Knowledge in Chapter Nine.
10.	 Readers outside North America may need an explanation. Canada has 

a national health care system, which the United States lacks, so drug 
prices are regulated at much lower levels (for the same drugs) in Canada. 
Consequently, Canadian pharmacies have a huge market serving U.S. 
customers online. But drug companies and the regulatory authority (the 
Food and Drug Administration) in the United States oppose this, as it 
undercuts their power and authority. This creates volatile conditions as 
the various opposing parties act constantly to enhance their positions. 
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